A Basic Introduction to Monitoring, Data & Assessment

Adam Griggs, Jesse Boorman-Padgett, Cristina Mullin PhD, Rob Cook

Environmental Protection Agency

Monday, March 4th, 2024, 10:45am – 12:00pm

What we'll cover today

- Big picture Intro to Monitoring, Data, and Assessment of Surface Waters (CWA)
- What CWA programs are part of Surface Water Assessment?
- More of the Science, Less of the Policy
- Cover the online systems that support surface water data

Clean Water Act - Tribal Program Road Map

Lifecycle of Data and Clean Water Act Implementation

Clean Water Act Section 106

Guidance for Clean Water Act Section 106 Tribal Grants Beginning 2023

IK Data Sovereignty

The Section 106 Program is committed to respecting tribal Indigenous Knowledge sovereignty practices. Indigenous Knowledge informs many aspects of tribal water quality programs and the information shared by Indigenous Knowledge holders is owned by them.

Tribes that use Section 106 funds to collect Indigenous Knowledge will not be required to report that shared knowledge as part of their grant requirements. Tribes are expected to meet the three reporting requirements (Monitoring Strategy, water quality data submitted through WQX, and Water Quality Assessment, as described in Chapter 6) but are not expected to share the underlying Indigenous Knowledge used to inform water quality objectives and management practices.

Monitoring for Water Quality

Why Monitor Water Quality?

- Characterize baseline conditions
- Determine suitability for certain uses
 - e.g. aquatic life or contact recreation
- Identify existing or emerging water quality problems
- Identify changes or trends over time (Worse? Better?)
- Measure effectiveness of efforts to maintain or improve water quality
- Develop water quality standards and/or assess compliance with standards

Monitoring may address one or all these objectives

Define Your Objectives BEFORE getting started on your monitoring approach!

When Defining Your Objectives:

Maxed out the Lowe's credit card but loving our new deck!

- Be realistic about monitoring limitations
 - Lack of resources/expertise to conduct a full spectrum contaminant analysis
 - Presently limited to use of a multi-probe device (dissolved oxygen, pH, temperature, specific conductance) and site observations/notes
- Staff time is limited can only visit sites periodically

These are real things, and every program experiences some sort of limitation whether it be:

- a. Time
- b. Money
 - Experience
- d. All of the Above

Let's Talk About Objective-Driven Monitoring

Identifying your objective guides your monitoring approach

- Where are you going to sample?
- How often are you going to sample?
- What parameters will be sampled?

Why Monitor Water Quality?

 Characterize baseline conditions Determine suitability for certain uses

compliance with standards

 Identify existing or emerging water quality problems Identify changes or trends over time (Worse? Better?)

Measure effectiveness of efforts to maintain or improve

Develop water quality standards and/or assess Identifying your objective also guides your data evaluation approach

- How often are you going to sample?
- What parameters will be sampled?

Reminder that real-world limitations exist in the form of \$, time, experience. This is reality, so don't let limitations or the desire to have a perfect approach get in the way of progress

Let's Talk About Objective-Driven Monitoring

Types of Monitoring Designs

- We can't monitor everywhere, so we must monitor "smart."
- Types of monitoring designs include:
 - Statistically-valid surveys
 - Targeted monitoring
 - Fixed Site Network
 - Rotating basin
- EPA recommends that States/Tribes integrate a variety of designs to best meet the range of monitoring objectives and multiple decision needs.

Let's Talk About Objective-Driven Monitoring

Types of Monitoring Designs

- Types of monitoring designs include:
 - Statistically-valid surveys
 - Targeted monitoring
 - Fixed Site Network
 - Rotating basin

Document these things!

- Sampling Objectives
- Sampling Locations
- Sampling Frequency
- Parameters Sampled and Methods
- Data evaluation approach

Where should this information be housed?

Potential Resource: EPA Regional Technical Partners Quality Assurance Project Plan

NO, NO. WE'RE ALL IN THIS TOGETHER.

Data Management

- Consider putting together a Data Management Plan
- Identify your raw data formats lab reports, logger files, field forms, etc.
- Do you need to marry these datasets so they can work together?
- Data formats
- Metadata
- Data management technologies
- Data analysis/use

Standardized data formats

Matrix Style Dataset

- AKA "Flat" "Wide" "Tidy"

Each Characteristic (measure) occupies its own column

- Handy for analysis
- Compact
- Just the values
- Not the best way to manage your metadata though
- Requires a crosstab import config

Activity Identifier	Activity Start Date	Monitoring Location Identifier	Iron	Lead	Manganese
nwiswi.01.99208821	8/28/1992	USGS-04072050	1400	1.5	510
nwiswi.01.99208822	8/28/1992	USGS-04072050	1800	1.2	650
nwiswi.01.99208826	8/28/1992	USGS-04085110	2200	1.2	890
nwiswi.01.99208856	8/29/1992	USGS-04085475	1600	1.4	480
nwiswi.01.99407330	9/19/1994	USGS-04063700	120		250
nwiswi.01.99407332	9/19/1994	USGS-04063700	5000	1.2	2100
nwiswi.01.99407338	9/21/1994	USGS-04080798	1400	1.2	820
nwiswi.01.99407340	9/21/1994	USGS-04080798	1200	1	2400

Standardized data formats

Stacked Style Dataset

- AKA "Tall" "Narrow"

 How data is stored/served by the WQP

Good for data management

 Not ideal for data analysis

 Allows for metadata

Result Identifier	Characteristic Name	Sample Fraction	Measure Value	Unit
NWIS-114877794	Stream width measure		3	ft
NWIS-114877795	Temperature, water		16.8	deg C
NWIS-114877797	Stream flow, instantaneous		0.19	ft3/s
NWIS-114877798	Specific conductance	Total	696	uS/cm @25C
NWIS-114877799	Acidity, (H+)	Total	0.00001	mg/l
NWIS-114877800	Oxygen	Dissolved	11.4	mg/l
NWIS-114877801	рН	Total	8.3	std units

Spreadsheets

Manage datasets (not really a database)

Very useful for manipulating, analyzing, organizing one dataset at a time

Expandable – Macros, external data, XML, data visualization

Relational Databases (light)

- MS Access (primarily)
- Entry-level database management
- Allows for the management of multiple tables of related data
- Connect, query, filter, update, or append data
- Ensure integrity of data quality/relationships
- Allows for front-end "forms" or "reports" or views of the data

What do we mean by relational?

001

PRB

MR

003

Data of different types are each managed in their own table

We establish relationships between certain pieces of information in the tables

The related pieces of information are often (but not always) ID or "key" fields

This allows for more detailed information to be stored in separate tables, allowing for useful queries of the database

Ex. This is what allows users to query across place, time, program, and result type in the WQP

4/23/2020

Conductivity

236

μS/cm

Relational Databases (Heavy)

Enterprise

These are fully customized Enterprise database solutions usually built in Oracle, SQL Server, or PostGres, as examples.

These systems are typically operated from a server or more commonly these days, in the Cloud.

These are typically built by developers, at some cost and may include front-ends for staff to access and manipulate.

Selecting a data management tool

How much data needs to be managed?

What resources are available?

Who needs to manage the data?

How often will you need to complete this task?

Relational dB lite Spreadsheets Enterprise dB √ (Can link forms) √ (Can add forms) **Requires forms** Data Entry Some (Power Pivot) **Relational data** V $\sqrt{}$ Run queries ν V Manual data fixes ٧ Dev req'd V Expertise required Medium Low High Costs required Low Low-Medium Med-High **Ensure Data Integrity** Some V V

What Is WQX today?

WQX is a 'standardized' approach for <u>sharing</u> water quality monitoring data of various types

WQX defines a common data model for communicating water quality data (sample data)

Designed to be automated

The structure of partner data systems don't matter, so long as they can map data to WQX standards

Many ways to prepare and submit data to WQX: including direct submissions, WQXWeb, and 3rd party apps

Ways to share your data to WQX

c:VerticalMeasure;

WQX hierarchy and terminology

- Organizations
 - All information is unique only to the organization
- User accounts
 - Multiple user accounts with different roles can be associated with an Organization
- Projects
 - Why you sampled
- Monitoring Locations
 - Where you sampled
- Activities and Results
 - Raw data referencing Orgs, Projects, & Monitoring Locations

WQX QAQC Service

WQX will provide a QAQC report upon your data upload

EXAMPLE QAQC REPORTS

Insert Draw Page Layou								Christian,					
	it Formulas Dat	ta Review View	Develop	er Help						පි Sha	re 🖓 🗘	Comments	
ibri ~ 11 ~ A^ A'	≡≡∎ ≫.	80 Wrap Text	General	~	E			Insert ~	Σ~	27 y	0		
I U • ⊞ • 🙅 • 🗛 •		🛄 Merge & Center 👒	\$ ~ %	. 58 - 88	Conditi	ional Formata	s Cell Stules y	Format *		Sort & Fir Filter x Sel	nd&s ≲e ect×	naitivity.	
Fant 19	Alignm	ent 15	Numb	er 15	a la	Styles	styles	Cells		Editing		nsitivity	~
X / E Ormain	tionFormalNama												
Ji Organiza	tionFormalName												
B C D	E F G	ні	J	K	L	М	N	0	р	Q	R	S	1
ityIde ActivitySta ActivityTyr Activ	ityMeMonitorin Result	Det/CharacteriResultS	mResultM	et ResultMe	ea ResultM	le: ResultStat	ResultDep	Statistical A	nalyticall A	nalyticalIL	.astChang	Transactio	
2010! 1/5/2022 Field Msr/Wat	er KCP	Dissolved oxygen :	aturation	95.1	%	Final		81	157 Н	ACH #	*******	_4ef84a81	
2010! 1/5/2022 Field Msr/Wat	er KCP	Dissolved oxygen	DO)	6.15	mg/l	Final		81	L57 H	ACH #	*******	_4cf84a81	
2010: 1/5/2022 Field Msr/ Wab	er KCP	pH		8.11	None	Final		81	L56 H	ACH #	INNUMANIN .	_4ef84a81	
2010: 1/5/2022 Field Msr/Wat	er KCP	Salinity		34.7	ppt	Final		83	L60 H	ACH #	********	_4ef84a81	
2010! 1/5/2022 Field Msr/Wat	er KCP	Temperature, wat	er	24.6	deg C	Final		25	550 A	PHA #	*******	_4ef84a81	
2010! 1/5/2022 Field Msr/ Wat	er KCP	Turbidity		4.85	NTU	Final		18	30.1 U	SEPA #	******	_4ef84a81	
2010! 1/5/2022 Sample-ReWat	er KCP	Total Nitro Filtered	fi as N	198.50	ug/l	Final		45	500-N A	PHA #	******	4ef84a81	
図 El ツィ (* ・ % ・ *	QAQCLocations.csv	• 🥬 Search						Chri	stian, Kevin		m –		×
e Insert Draw Page L	ayout Formulas	Data Review Vi	ew Deve	eloper l	Help					ß	Share	Comm	ants
: 🗙 🗸 🎵 Orga	nizationformainame												,
B C D	E F	G H	1	J. B	0	L M	N	0	Р	Q	R		5
Monitorin Monitorin Monitorin I	atitude Longitude La	stChang Transactic Cou	ntry State	Coun	ity HUC	Eightt GEO_L	ATS GEO_	LON GEO_CO	U GEO_ST	ATGED_CO	DU GEO_H	UC GEO_P	REAC
00152 Ala Moani BEACH Pro	21.29104 -157.855 ##	###### _5d4415b5-ae	d0-453a-92	01-8eaab3	b42bc	21.	291 -157	855 UNITED	STHAWAII		200600	000 2006	000
000159 Grays Bea BEACH Prc	21.27719 -157.831 ##	###### _5d4415b5-ae	d0-453a-92	D1-8eaab3b	b42bc	21.	277 -157	831 UNITED :	STHAWAII		200600	000 2006	0000
000160 Tavern Be BEACH Prc	21.27564 -157.826 ##	###### _5d4415b5-ae	d0-453a-92	01-8eaab3b	b42bc	21.	276 -157	826 UNITED	STHAWAII		200600	000 2006	0000
000169 Mokuleia BEACH Prc	21.58209 -158.193 ##	###### _5d4415b5-ae	d0-453a-92	01-8eaab3b	b42bc	21.	582 -158	193 UNITED :	STHAWAII		200600	000 2006	0000
000171 Haleiwa B-BEACH Prc	21.5984 -158.104 ##	###### _5d4415b5-ae	d0-453a-92	01-8eaab3l	b42bc	21.	598 -158	104 UNITED	STHAWAII		200600	000 2006	0000
000172 Waimea B BEACH Prc	21.63974 -158.064 ##	###### _5d4415b5-ae	d0-453a-92	01-8eaab3	b42bc	21	.64 -158	064 UNITED	STHAWAII		200600	2006	0000
000173 Kawela Ba BEACH Prc	21.69726 -158.009 ##	###### _5d4415b5-ae	d0-453a-92	01-8eaab3b	b42bc	21.	697 -158	009 UNITED	STHAWAII		200600	000 2006	000
100176 Hausta Ba BEACH Bar	157.01 H		10 452 02	1. Reach 3	4364	21	63.3 15	2.01 100750	CTITATA IL	-	200500	2006 2006	000
and the second	H .	1 🖉 📄 🚑		1 10	X	Desktop	6	74F A 📻	1 🖿 🗉	3 de 5	s 3:36	PM E	5

WQX QAQC Service User Guide TADA Team 2023-09-15 Source: vignettes/W0XValidationService.Rmd

TADA Leverages the Water Quality eXchange (WQX) QAQC Service

This is a overview of the the WQX Quality Assurance and Quality Control (QAQC) data submission service, and how TADA leverages that service to flag potentially invalid data in the Water Quality Portal (WQP). It will cover: 1) an overview of all available WQX QAQC tests for data submissions, 2) which of these QAQC tests are also available in TADA for flagging potentially invalid WQP data, and 3) how to interpret and provide feedback on the validation reference tables referenced by WQX and TADA for this QAQC service.

Background

TADA 0.01

Reference Articles -

The WQX expectation for submissions is that users submit only QAQC'd data and utilize WQX elements to ensure the data is of "documented quality". The WQX team has historically hosted data quality working groups aimed at creating best practices and required data elements for WQX 3.0 for specific parameter groups such as nutrients, metals and biological data. These resources have supported users to submit data of documented quality. This approach has been

On this page TADA Leverage eXchange (WC Background Available Tests Providing Feed Tables

Data Use – Analysis, Visualization, and Assessment

- What are the tools and resources available to help you analyze, visualize, and assess your data?
- Quick Intro to the Water Quality Portal
- Basics of Water Quality Assessment
- Intro to Tools for Automated Data Analysis (TADA)
- Intro to ATTAINS

Water Quality Portal (WQP)

NATIONAL WATER QUALITY MONITORING COUNCIL

 dataRetrieval
 Usable data tranand action

 Includes important

 Usable data tranand

 Includes important

 Includes important

 Usable data tranand

 Includes important

 Includes important

 Includes important

 Usable data tranand

 Includes important

 Includes important

 Includes important

 Includes important

 Includes important

 Inclos

 Inclos
 <

- Supports CWA assessments and other water quality research
- Serves as the backbone for water data tools like HMW

Water quality monitoring data is foundational to being able to answer important questions

- Is my water safe?
- Is there enough?

Format is the same for everyone who wants to share data

- Water quality monitoring and data management is complicated
- Standardized, electronic data is more valuable than data in file cabinets (reusable, sharable, discoverable, interoperable, and includes important metadata)

Usable data translates to knowledge, public awareness, and action

Water Quality Portal

Operated under An Interagency Cooperative agreement (USGS & EPA)

- Serves data from USGS, EPA, USDA, NPS in a standard WQX format
- # WQP: Data from >1,500 organizations
- # WQP: >420m records from >1m sites
- Serves data of All Water Types
- Includes a Graphical User Interface (GUI) & Web Services
- One of Our Integrated Systems (IOW HUB)
- DATA ServiceS can directly power analytics like those in HMW
- Growing Number of internal/external Tools built on top of this Primary data source

Retrieving data from the WQP

Several Options:

- 1. WQP Web Interface
 - WQP Demo on How to Download Data
 (2015)
 - WQP Demo on How to Download Data
 (2019)
- 2. How's My Waterway

3. TADA

The Water Quality Portal Website NATIONAL WATER **QUALITY MONITORING** COUNCIL Explore WQP Sites 🗸 Help & About Basic Advanced **Download Water Quality Data** f 3 Location Parameters Specify location parameters to describe the spatial extent of the desired dataset. Additional options are available in the Advanced Download. All fields are optional. Country 0 All Countries Ŧ TADA Option B: Query the Water Quality Portal (WQP) Use the fields below to download a dataset directly from WQP. Fields with '(s)' in the label allow multiple selections. Hydrologic Units may be at any scale, from subwatershed to region. How mindful that large gueries may time out. Date Range Start Date End Date 2023-09-20 2023-09-20 Location Information State County (pick state first) Hydrologic Unit Select state Select county Monitoring Location ID(s) Start typing or use drop down menu Metadata Filters Site Type(s) Organization(s Project(s)

How's My Waterway

low	nload Data			6
- 53	11		3	220
<	0			0
19	171 1984	1997	2010 2	023
	Toggie All		Espand	Aa 🖂
80	horacteristic Groups		Number of Measure	ments
	Biological, Algae, Phytopl	ankton	2	o >
	Biological, Fish		2	• >
	Information		34	18 >
	Inorganics, Major, Metals		25	ia >
	Inorganics, Major, Non-m	etals	81	2 >
	Inorganics, Minor, Metals		1,02	* *
	Inorganics, Minor, Non-m	etals	25	io >
	Microbiological		10	s >
	Nutrient		98	9 >
	Organics, Other		5,30	1 >
	Organics, PCBs		23	5 >
	Organics, Pesticide		2,10	2 >
	Physical		3,22	з >
	Radiochemical		85	8 ≯
	Sediment		12	>
	Stable Isotopes		4	× 01
Toto	Measurements Selected:		15,70	18
T Ad	vanced Filtering		Download Selected Da	ta 🖪 🖥
We openan	tter Quality Portal User Guide tev browser tab)			

Using Data from WQP Web Services

• Web services are URLs that provide the instructions from your query

Save the URL to your Query	Query URL Copy and share the URL of this query. https://www.waterqualitydata.us/#mimeType=csv&providers=NWIS&providers=STEWARDS&providers=STORET
	Station 🖲
URL of your data download	https://www.waterqualitydata.us/data/Station/search? mimeType=csv&zip=yes&providers=NWIS&providers=STEWARDS&providers=STORET
Use this web service URL in any data application that	cURL curl -X POSTheader 'Content-Type: application/json'header 'Accept: application/zip' -d '{"providers": ["NWIS","STEWARDS","STORET"]}' 'https://www.waterqualitydata.us/data/Station/search?mimeType=csv&zip=yes'
R, Access, Arc Online, etc.	WFS GetFeature https://www.waterqualitydata.us/ogcservices/wfs/? request=GetFeature&service=wfs&version=2.0.0&typeNames=wqp_sites&SEARCriFARAMS=providers%3ANWIS%7CSTEWARDS%7C STORFT&outputFormat=application%2Fjson Clear search Download

Basics of Water Quality Assessment

Assessment methods guide impairment decisions based on:

- Period of record
- Aggregated measurements
- Frequency
- Duration
- Magnitude
- Season
- Correction factors
- Covariates
- Site-specific criteria

Document Your Process

- Define your Assessment Units
 - Points
 - Lines
 - Polygons
 - Combination of the Above
- Which uses and parameters will be assessed for each water?
- What criteria will be used to assess those parameters?

- What methods and decision rules will be applied?
 - Percentage (>10%)
 - Rate of recurrence (no more than once in 3 years)
 - Outside of a range (x<y>z)
 - Not to exceed (>x)
- How may results are needed?

Determine How the Tribe Uses Tribal Waters

Salamander Creek: Numeric Criteria/Thresholds

Salamander Creek is designated for four uses that have the following numeric criteria:

Parameter	Unit	Туре	Statistic	Exceedance	Aquatic Life Other Than Fish	Irrigation Water Supply	Public Drinking Water Source	Warmwater Habitat
Conductivity	uS/cm	Maximum	Instantaneous	10%	750	2,500	1,000	1,500
Dissolved oxygen	mg/L	Minimum	Instantaneous	None	5.0			5.0
Nitrate	mg/L	Maximum	Average*	None	1.5	100	10*	1.0
рН	SU	Range	Instantaneous	None	6.5 <ph<9< td=""><td></td><td></td><td>6.5<ph<9< td=""></ph<9<></td></ph<9<>			6.5 <ph<9< td=""></ph<9<>
Total phosphorus	mg/L	Maximum	Average	None	0.1			0.3

* The nitrate criterion is instantaneous for the public drinking water source.

Salamander Creek: Use Support Summary

Designated Use	Use Support	Probable Cause of Impairment
Aquatic Life Other Than Fish	Not	Conductivity and Total Phosphorus
Irrigation Water Supply	Full	
Public Drinking Water Supply	Full	
Warmwater Habitat	Not	Nitrate

EPA Criteria Search Tool

- Continuously updated (20-30 times a year) as EPA approves new or revised WQS
- Query by parameter or use
- Query within a tribe/state or across all

Search Criteria by State, Territory, or Authorized Tribe

Select the state, territory, or authorized tribe to generate th	e criteria table. Each criterion has a t	outton that links to the source regulation to provide appropria	te context.
Note: Selecting the button should open the regulation to the	ne PDF page. Otherwise, the source bu	itton indicates the appropriate page as indicated by the PDF fi	le viewer.
Select a state, territory, authorized tribe, promulgated rule Pueblo of Tesuque (Region 6)	, or EPA recommended criteria.		
Show 10 - entries			Search this table.
Parameter Search this column.		Application aquatic life	Criteria Magnitude Search this column.
aluminum • <u>CompTox</u>	Source Page 17	high quality coldwater fishery use (Aquatic Life • Acute)	750 μg/l
aluminum - <u>CompTox</u>	Source Page 17	warm water fishery use (<mark>Aquatic Life</mark> • Acute)	750 μg/l
aluminum - <u>CompTox</u>	Source Hoge 18	high quality coldwater fishery use (<mark>Aquatic Life</mark> • Chronic)	87 µg/l
aluminum • <u>CompTox</u>	Source Page 18	warm water fishery use (<mark>Aquatic Life</mark> • Chronic)	87 µg/l
arsenic • <u>CompTox</u>	Source Page 17	high quality coldwater fishery use (Aquatic Life • Acute)	340 µg/l
arsenic • <u>CompTox</u>	Sdurpe Page 17	warm water fishery use (Aquatic Life • Acute)	340 μg/l
arsenic - <u>CompTox</u>	Source Page 18	high quality coldwater fishery use (<mark>Aquatic Life</mark> • Chronic)	150 µg/l
arsenic • <u>CompTox</u>	Source Page 18	warm water fishery use (Aquatic Life • Chronic)	150 μg/l

Select Water Quality Standards Information for a Specific State, Territory, or Tribe

Each state, territory, and authorized tribe has a page on this website containing information about their relevant WQS, including those in effect for CWA purposes. Other information may also be included (for example, contact information, federal promulgations, etc.). Select the state on the map or using the **Select state, territory, or authorized tribe** selector.

Select state, territory, or authorized tribe (*includes some tribes not yet a	outhorized)
select state, territory, or authorized tribe	~

https://www.epa.gov/wqs-tech/statespecific-water-quality-standardseffective-under-clean-water-act-cwa

Performing analyses and assessments

- Open-source code (R or Python)
 - Can automate/streamline a wide variety of tasks and SAVE TIME
- Excel
- Any other software that works for you

Paste Q Clip	Cut Copy - Format Pa pboard	inter G_{L}	• <u>n</u> • A	∧' Ξ 3	E = ♥+ - Ø w E = E = E [Algoment	ap Text	General V S v	0/ a 1+		Normal	Bad	Good	Neutral	🕮 🕮 🖻
422		×					6	Number	6 -40 Fermatting ~	Table -	styl	Explanat	ery	Cells
							1. 1991							
	A	6	c	D			0	н		et 1 1 1 1 1 1 1	× 11	L	м	N
		7			Primary E	sody Co	ontact/	Recre	ation Bene	ficial Use (C	Juitural)			
Time	e Period:	October 1, 2015-Septemi	per 30, 2017											
Time	e Period:	May 1- September 30	Recreation	Season										
Cr	riteria	Oklahoma Water Quality	Standards (Chapter 45 (p	21))									
Sup	pported	\leq 10% of the sample co	ncentrations	exceed the M	DLs (406 cfu/100mL)	during recre	eational sease	on AND M	Ionthly geo mean is ≤	126 cfu/100mL.				
Not S	Supported	> 10% of the sample co	ncentrations	exceed the N	DLs (406 cfu/100mL)	during recre	ational seaso	on OR Mo	onthly geo mean is > 1	26 cfu/100mL				
					% for Determination		1		Criteria Level (n2)	1 OWOSI Chan 45	Site Total		Primary Body Contact/Re	creation Beneficial
Par	rameter	Monitoring Site	Longitude	Latitude	in the beterminister	# Samples	# Samples	# Actual	Numerical Criteria	Geometric Mean	Samples	% Exceedance	Supporting Lise	Not Supporting I
					≥75% Required	Planned	Required	Sampled	(MPN)	(MPN)	Exceeding		< 10% Exceedance	> 10% Evreedar
-	Fcoli	Bellcow Creek 001	35.651971	.96.893034	83%	18	13.5	-15	405	126	6	40%		40%
	Ecoli	Deep Fork River	35.666382	-96.679904	96%	24	18	23	406	126	1	4%	4%	
13	Ecoli	Deep Fork River 002	35.64223	-96.822198	94%	18	13.5	17	406	126	0	0%	0%	
_	Ecoli	Deep Fork River 003	35.640511	-96.910903	94%	18	13.5	17	406	126	2	12%		12%
	Ecoli	Dry Creek 001	35.683965	-96.698024	78%	18	13.5	14	406	126	6	43%		43%
13		Quapaw Creek 001	35.621029	-96.822178	78%	18	13.5	14	406	126	2	14%		14%
	Ecoli		and the second division of the local divisio	04 2335.30	50%	18	13.5	9	104					
	Ecoli Ecoli	Robinson Creek 001 *	35.608344	*90.735529					AUD	126	6	67%		67%

TADA (Tools for Automated Data Analysis)

WQ Assessment

TADA Products

- Different tools for different users
 - <u>R Package</u> (coders)
 - <u>R Shiny Application</u> (non-coders)
- <u>User Guide</u> on GitHub Pages
- EPA TADA Website
- <u>R and R Shiny Learning Resources</u>
- Inventory of open-source R code and WQP tools
- Reach out to learn more!

"Serve as a hub for an open-source water quality community"

Working Group Mission

To share and develop **R code** for evaluating and visualizing **WQP** data more efficiently though collaboration and open-source programming. This includes working together to find commonalities in assessment processes across the nation, creating flexible tools that can be easily customized to work within existing workflows, supporting each other in learning R, and ensuring products will be accessible to organizations most in need.

TADA Visualizations

Your dataset contains 131,106 unique results from 221 monitoring location(s) and 6 unique organization(s).

Show 10 ♥ entries

OrganizationFormalName	Result_Count					
Chickasaw Nation Environmental Service	4580					
Fond du Lac Band of Chippewa (MN)	20176					
Pueblo Of Tesuque	6795					
Pueblo of Pojoaque	1181					
Red Lake DNR	81734					
Sac and Fox Nation (Tribal)	9815					
howing 1 to 6 of 6 entries	Previous 1 Next					

~

Data Analysis & Assessment Take-Aways

- Identify and evaluate all available data
- Document your assessment process
 - Monitoring locations
 - Assessment units and uses
 - Criteria or thresholds
 - Methodologies & decision rules
- Perform assessment
 - Review for quality through QAPP review and data screening (TADA can help with data screening)
 - Use any programs/tools that you are comfortable with

Assessment Reporting

- Reporting is done through 106 TARs/WQARs
- Some tribes have opted into submitting their TARs/WQARs through ATTAINS
- The Assessment and TMDL Tracking and ImplementatioN System (ATTAINS) is EPA's system for storing water quality assessment data including:
 - State 303(d)/305(b) assessments and listings
 - Tribal 106 assessments
- ATTAINS data is shared with the public through How's My Waterway

Reporting: ATTAINS Tribal Pilot

- 2016-ATTAINS Tribal Pilot started
- October 2017-ATTAINS training for pilot tribes
- December 31, 2017-First ATTAINS submissions due from 13 pilot tribes
- Pilot tribes have continued to submit through ATTAINS

Objectives

- Test whether ATTAINS can serve as an alternate reporting mechanism for tribal water quality assessment reporting
- Capture programs as they exist, can be used regardless of whether tribe has WQS or TAS for 303(d)
- Understand the water quality on tribal lands

Why use ATTAINS?

- 1. WE USE IT !!!! Availability increases utility
- 2. Eliminates paper reporting
- 3. Reduces reporting time and burden
- 4. Aligns tribal and state assessment reporting
- Prepares tribes interested in CWA 303(d) authority to make and report listing decisions

Where We Are Now

- 20 pilot and phase 1 tribes currently have data in ATTAINS
- Phase 2 tribes start reporting at the end of 2024
- ATTAINS is an accepted reporting mechanism in upcoming revised 106 guidance
- Created assessment trainings, parameter factsheets, & assessment methodologies
- Tribal data is How's My Waterway!

What is How's My Waterway

- EPA's tool to provide the general public with information about the condition of their local waters
- Brings data in from a number of data systems including WQP and ATTAINS
- Displays information on 3 scales: Community (HUC12), State/Tribe, and National

Tribal Data in How's My Waterway

- Tribal monitoring data has been in the Community page since the beginning
- Tribal assessment data was added to Community page in December 2020
- A cultural use group was added in April 2022
- Displays tribal and state data side-by-side
- Tribal pages launched December 2022

Thank you!

Rob Cook Adam Griggs Cristina Mullin Jesse Boorman-Padgett <u>cook.robert@epa.gov</u> <u>griggs.adam@epa.gov</u> <u>mullin.cristina@epa.gov</u> <u>boorman-padgett.jesse@epa.gov</u>

Wednesday Deeper Dives

Monitoring Data Management & WQX WQP & TADA Assessment, ATTAINS, HMW