A Landscape Level Approach to Wetland Dunctional Assessment Canadian River Watershed New Mexico

GeoSpatialServices

Association of State Wetland Managers

November, 2012

Application of Elements of a State Water Monitoring and Assessment Program For Wetlands

April 2006

Wetlands Division Office of Wetlands, Oceans and Watersheds U.S. Environmental Protection Agency

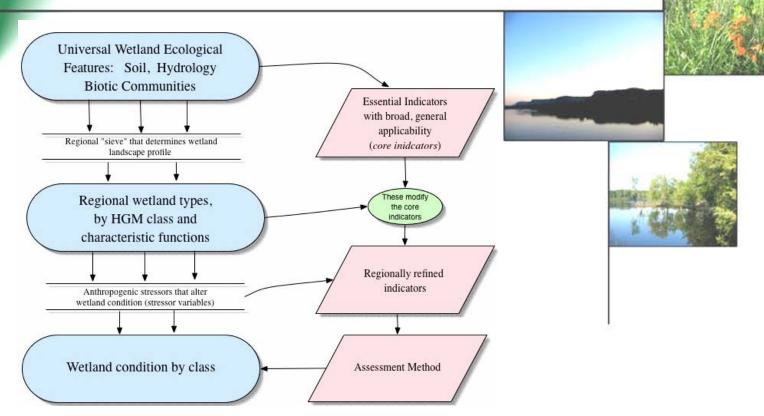
Available on the web

http://www.epa.gov/owow/wetlands/monitor/

Approach for this project based on: EPA 2006 Document: Application of Elements of a State Water Monitoring and Assessment Program For Wetlands

Elements of a State Water Monitoring and Assessment Program For Wetlands

Goals of this document:


- provide guidelines for the implementation of a state wetland monitoring and assessment program
- align monitoring programs with the requirements of the Clean Water Act
- generate information necessary to report on condition of state wetland resources
- prioritize wetland protection, restoration and mitigation
- promote interstate consistency for wetland reporting

Core Indicators And Metrics

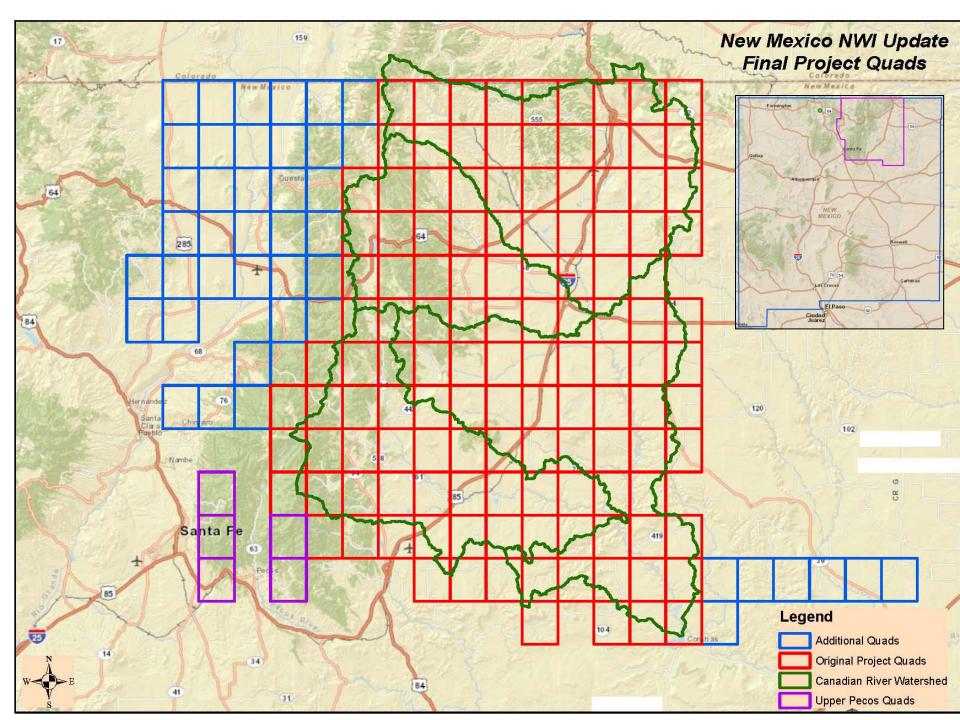
Conceptual model of state wetland assessment showing:

- ecological attributes of wetlands
- response to human disturbance

EPA 3 Level Technical Approach

	Products/Applications
Level 1 - Landscape Assessment:	•Targeting restoration and monitoring
Use GIS and remote sensing to gain a landscape view	Landscape condition assessment
of watershed and wetland condition. Typical	•Status and trends
assessment indicators include wetland coverage (NWI), land use and land cover	 Integrated reporting CWA 305(b)/303(d)
Level 2 – Rapid Wetland Assessment:	•401/404 permit decisions
Evaluate the general condition of individual wetlands	 Integrated reporting
using relatively simple field indicators. Assessment is often based on the characterization of stressors know to	Watershed planning
limit wetland functions e.g., road crossings, tile	•Implementation monitoring of
drainage, ditching.	restoration projects, including nonpoint source BMPs, and Farm Bill programs
Level 3 – Intensive Site Assessment	•WQS development, including use
Produce quantitative data with known certainty of	designation
wetland condition within an assessment area, used to	 Integrated reporting
refine rapid wetland assessment methods and diagnose the causes of wetland degradation. Assessment is typically accomplished using indices of biological	 Compensatory mitigation performance standards
integrity or hydrogeomorphic function.	•Verify levels 1 and 2 methods

Level 1 - Landscape Level Wetland Mapping & Assessment


Project Objectives:

Use remote sensing, image interpretation techniques, collateral GIS data, and best professional judgment to:

- Map or update the wetland landscape profile of a project study area (soil, hydrology, vegetation)
- Extend traditional wetland mapping to include "interpretable" hydrogeomorphic and other metrics
- Correlate wetland types and characteristics to wetland function on the landscape
- map and document additional wetland characteristics to provide continuity between Level 1, 2 and 3.

Northeastern New Mexico Study Area Description

- <u>Watersheds (HUC 8)</u>: Upper Canadian, Upper Rio Grande, Upper Pecos Rivers
- Total Area: 9100 sq. miles or 5.7 M acres
- <u>Counties</u>: Colfax, Mora, San Miguel, Taos, Rio Arriba and Santa Fe
- <u>Previous Wetland Mapping</u>: None, limited site specific NWI
- <u>Major Ecoregions</u>: Montane forests, foothill shrub lands, tableland shrub and grasslands, high plains

Major Steps of Project

- Map and classify present-day wetlands:
 - NWI Cowardin classification
 - FGDC National Wetland Mapping Std
 - Map and classify adjacent riparian areas
 - project imagery 2009 NAIP
 - numerous collateral data layers
- Add hydrogeomorphic characteristics to wetlands:
 - LLWW interpretation and classification
- Develop functional correlation table:
 - utilize local wetland professionals "bpj"
 - establish wetland functions to be assessed
 - correlate wetland descriptors to functions

• Link to Rapid Assessment Methods - collect additional data, tie to HGM

Mapping and Classification Systems

 National Wetland Inventory (NWI) Cowardin (1976)

- System for Mapping Western Riparian Areas
 Dick/USFWS (2009)
- •Landscape Position, Landform, Waterbody Type, Water Flow Path (LLWW) Tiner (2011)
- Potentially Restorable Wetlands Mapping SMUMN (2012)

National Wetland Inventory

- Based on Cowardin (1976) and endorsed by 2009 FGDC Federal Wetland Mapping Standard
- Dominant Life Forms (e.g. forested, emergent)
- Subclasses (e.g. Persistent, Non-persistent)
- Water Regimes (generally, e.g. Wet Soil Palustrine)
- Special Modifiers (certain, e.g. farmed, beaver, excavated etc.)


NM Project Imagery and Collateral Data

Interpretation Challenges

- Limited resources for image acquisition
- Chose to move forward with existing NAIP imagery
- True color, mid summer, leaf on, drought conditions. Not an ideal image source for wetland interpretation
- Ideally would have been spring, leaf off, normal precipitation color infra-red
- Forced reliance on collateral data

Maxwell Wildlife Refuge 2009 NAIP



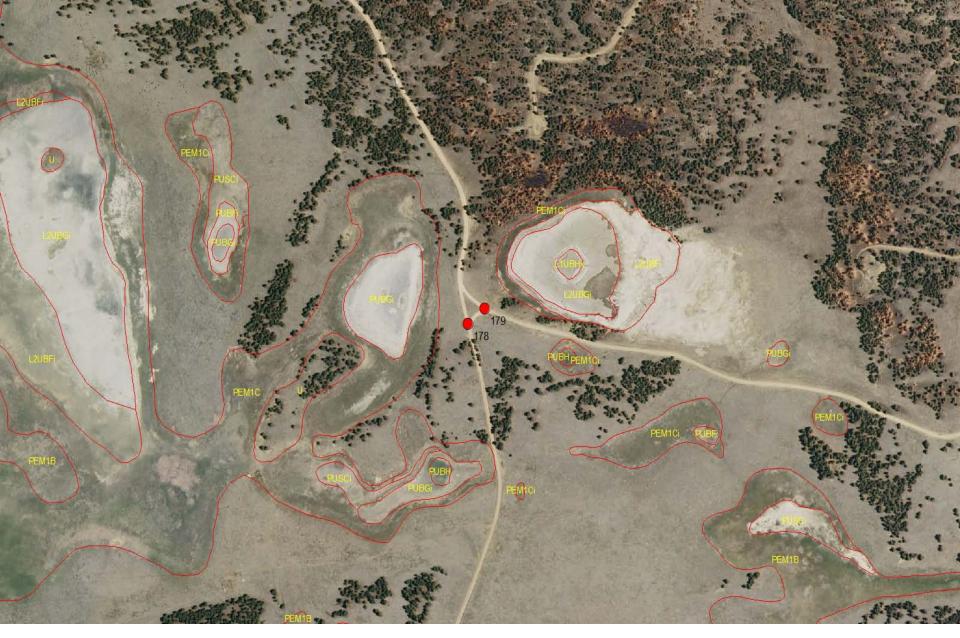
Maxwell Wildlife Refuge 2005 NAIP

Maxwell Wildlife Refuge 2005 – 2009 Imagery

Maxwell Wildlife Refuge 2009 NAIP CIR

NM Collateral Data Sources

- USGS 1:24,000 DRG
- USGS NHD streams and waterbodies
- NRCS SURRGO Soils Data
- NAIP Imagery 2001, 2005, 2009 CIR
- Google Earth imagery time slider tool
- SWQB Stream Data (cold water, warm water, fish species)
- USGS 30m and 10m National Elevation Dataset
- USFS Springs and Seeps database


NM Pre and Post Mapping Field Validation

Validation of image signatures

Confirmation of landscape position and other hydrogeomorphic metrics

Final NWI Delineation

Riparian Mapping System

- **System** is a single unit category riparian vegetation (Rp).
- Subsystem defines two categories reflecting the water source for the riparian area - lotic (1) and lentic (2).
- Class describes the dominant life form of riparian vegetation. Classes are: forested (FO), scrub/shrub (SS), and emergent (EM)
- **Subclass** further describes the Class as either dead (5), deciduous (6), evergreen (7), or mixed deciduous/evergreen (8).
- **Dominance Type** refers to vegetative species within the mapping unit, e.g. cottonwood (CW).
- **Rp1FO6CW** is interpreted as:

LLWW Based on Tiner (2011)*

Landscape Position - relationship between a wetland and an adjacent waterbody or not

<u>Landform</u> - shape or physical form (island, basin, floodplain, etc.)

Water Flow Path - directional flow of water (outflow, inflow, isolated, etc.)

<u>Water Body Type</u> – lake, pond, river, stream

*derived from HGM hydrogeomorphic classification (Brinson 1993)

Landscape Position

(LLWW continued)

<u>Lotic</u> – in or along rivers and streams and in floodplains

Lentic – in or along lakes

<u>Terrene</u> – completely surrounded by upland or nearly so; not flooded by river or streams

GeoSpatialServices

Lentic (LLWW continued)

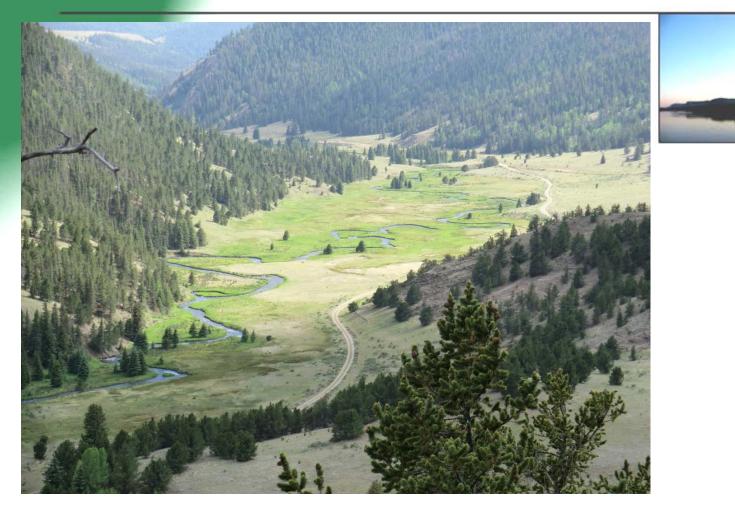
Lotic (LLWW continued)

Terrene (LLWW continued)

Landforms (LLWW continued)

- Slope
- Island
- Fringe
- Floodplain (basin, flat)
- Interfluve (basin, flat)
- Basin
- Flat

Flats (FL) Landform

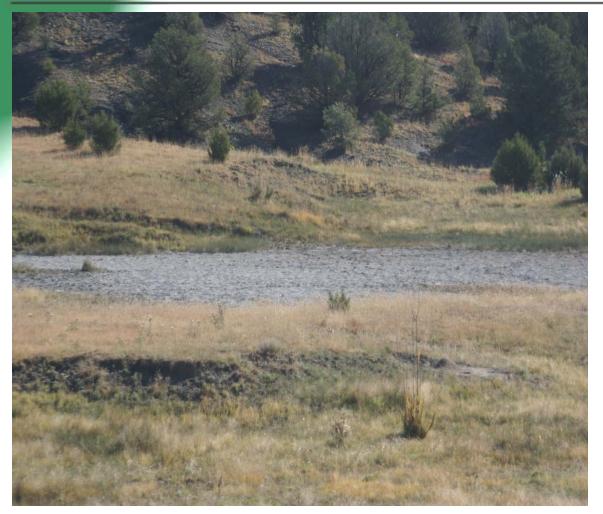


Slope (SL) Landform

Floodplain (FL) Landform

Water Flow Paths

- Bidirectional (BI)
- Inflow (IN)
- Isolated (IS)
- •Throughflow (TH)
- •Outflow (OU)


Bidirectional (BI) Waterflow Path

Inflow (IN) Waterflow Path

Isolated (IS) Waterflow Path

Outflow (OU) Waterflow Path

Throughflow (TH) Waterflow Path

Waterbody Types

River (RV)

- low, middle, high gradient
- dammed

Stream (ST)

- low, middle, high gradient
- artificial
- Lake (RV)
 - natural
 - dammed
- Pond (PD)
 - natural, dammed, excavated, beaver, other artificial

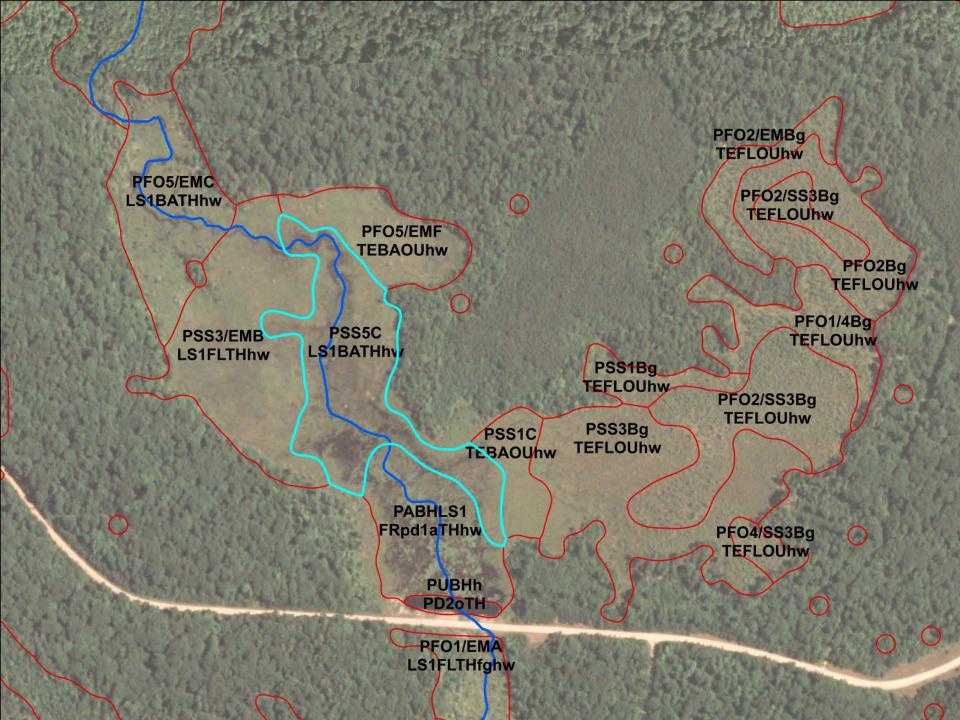
LLWW Interpretation and Coding

During NWI mapping also consider and add LLWW codes:

Example (next slides, highlighted polygon):

NWI: **PSS5C**

Paulustrine, scrub shrub - dead, seasonally flooded)


LLWW: LS1BATHhw

Lotic Stream low gradient, Basin, Through-flow, headwaters

Functional Correlation Exercise

Project steering committee (NMED, NM HP, Corps, FWS, stakeholders) identified wetland functions for assessment :

- Surface Water Detention
- Streamflow Maintenance
- Shoreline Stabilization
- Nutrient Transformation
- Carbon Sequestration
- Sediment Retention
- Groundwater Recharge
- Wildlife Habitat
- Fish Habitat
- Water bird and Waterfowl Habitat

Functional Correlation

What function does each wetland perform and how well?

- Each wetland polygon ranked high or moderate based on NWI type and LLWW characteristics
- Correlation tables from a variety of other projects used as a starting point Tiner (2003), Fizzell (2011), Miller et al. (2012), Richtman (2012)
- Steering committee assessed and modified these tables using Best Professional Judgment and local knowledge

Functional Correlation

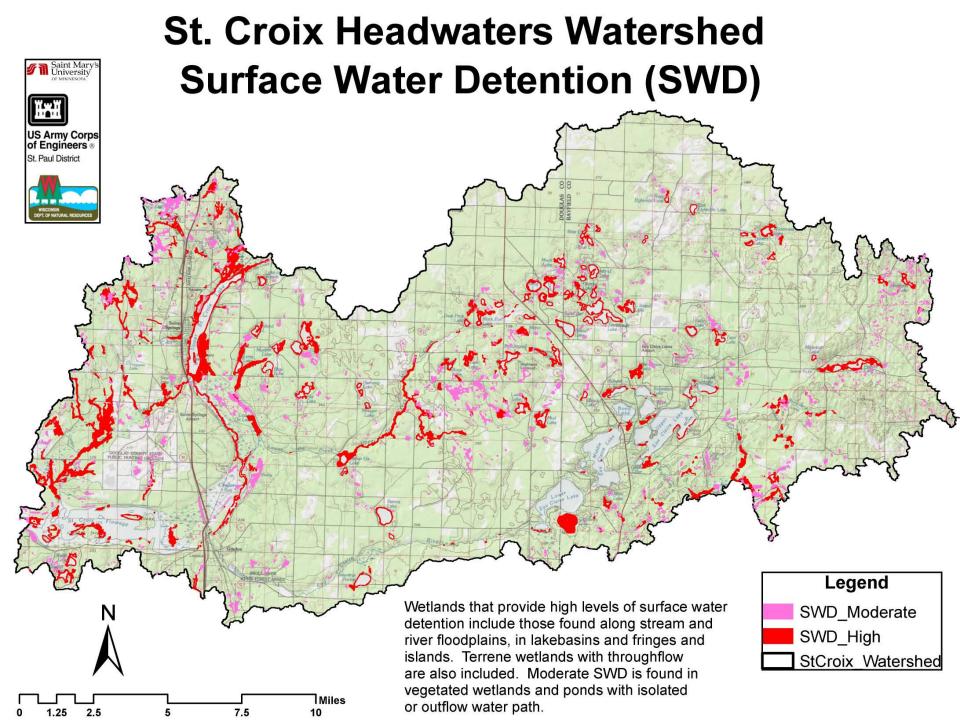
- Wetland polygons are assigned to functional categories using a series of SQL queries
- Spatial queries are used to make assignments based on adjacency and proximity
- Collateral data layers (e.g. cold water streams, bedrock geology) also support function assignments
- Separate geodatabases are produced for each function
- Functional assignments and map products are reviewed with Steering Committee and in the field

Streamflow Maintenance

Highly Functional

- All headwater wetlands
- Vegetated wetlands along streams, rivers, lakes
- Terrene pond wetlands with through or outflow ٠
- All wetlands with organic soil adjacent to 3rd order or • higher streams

Moderately Functional


- Terrene basin isolated or outflow vegetated wetlands
- All wetlands with mineral soil adjacent to 3rd order or higher streams
- Other wetlands adjacent to lakes not already included in High

						Surfac	e Wa	ter Ma	inten	ance (S	SWM					
	11						CODEC									
LEVEL	WETLAND CODES											NOTE				
	Land-	1		LLWW	1	-		NWI			1	NOTES				
	scape Posi- tion	CON	Water body	Land form	Water- flow Path	Sp. <mark>Mod.</mark>	CON	System	Class	Water Regime						
High	#			#	#	hw						all headwater wetlands				
mgn						1100										
			PD LK		TH											
	1.000		LK													
	LE	-			TH											
					00											
	#	adj.	RV ST									all wetlands and wetland complexes adjacent to lakes, rivers, and streams				
	LS		#	#	#		adj.*	#	#	not B	g	 *all wetlands adjacent to third order streams (LS higher (downstream in the watershed) with organ soils (g) 				
	TE				тн	pd										
					OU	pd										
Moderate	LE	adj.*	LK	#	тн							*lentic wetlands adjacent to lakes				
	LR1			FP	#											
	LS	1		BA	#					1						
	TE			#	тн							natural and partially drained terrene wetlands				
	TE				IS	pd										
					iN	pd										
	TE	adj.*		FL	ou		AND	Р	#	в	#	*all saturated wetlands adjacent to third order				
												streams (LS)or higher (downstream in the wat				
			PD		IS											
			LK		IN											
	LE				BI											

Wetland Functional Summary - 2009 Saint Croix Headwaters Watershed							
Wetland Function	Acreage	% of Watershed Acreage	% of Total Wetland Acreage in Watershed				
General							
Total Area of Watershed	215,508.3						
Upland	177,718.5	82.5%					
Wetland	37,789.8	17.5%					
Surface Water Detention (SWD)							
High	18,284.3	8.5%	48.4%				
Moderate	14,315.7	6.6%	37.9%				
Function Total	32,600.0	15.1%	86.3%				
Surface Water Maintenance (SWM)							
High	27,133.4	12.6%	71.8%				
Moderate	4,918.2	2.3%	13.0%				
Function Total	32,051.6	14.9%	84.8%				
Nutrient Transformation (NT)							
High	18,137.8	8.4%	48.0%				
Moderate	6,693.7	3.1%	17.7%				
Function Total	24,831.5	11.5%	65.7%				
Sediment Retention (SR)							
High	14,222.4	6.6%	37.6%				
Moderate	4,659.5	2.2%	12.3%				
Function Total	18,881.9	8.8%	50.0%				
Carbon Sequestration (CAR)							
High	4,839.3	2.2%	12.8%				
Moderate	32,950.5	15.3%	87.2%				
Function Total	37,789.8	17.5%	100.0%				
Shoreline Stabilization (SS)							
High	7,852.4	3.6%	20.8%				
Moderate	3,552.2	1.6%	9.4%				
Function Total	11,404.6	5.3%	30.2%				

Extending Level 1 Mapping and Characterizations

- Map or model potentially restorable wetlands
 - use terrain models (basins, flow network, TWI etc.)
 - use hydric soil components from SSURGO
 - subtract existing wetlands and non-compatible land uses
 - orthorectify and classify historic aerial imagery
- Identify/describe reference wetlands of various types
- •Record adjacent upland land uses and buffers
 - coded to wetland geodatabase database by type and presence
 - infiltration, runoff, erosion, sedimentation, nutrients, pollutants
- Add vegetation species, soils etc. where interpretable
- Crosswalk LLWW to regional HGM sub-classes for RAM

Wetland Functional Summary - 1948, 1992, 2009 Western Portion of Saint Croix Headwaters Watershed										
Wetland Function	Acreage	% of Study Area	Acreage	% of Study Area	Acreage	% of Study Area	Change in Acreage	% Change in Acreage	Change in Acreage	% Change in Acreage
Surface Water Detention (SWD))								· · · · · ·	
High	11,742.5	20.0%	13,195.1	22.5%	9,063.6	15.4%	-2,678.9	-22.8%	-4,131.5	-31.3%
Moderate	3,971.3	6.8%	4,392.8	7.5%	8,666.1	14.7%	4,694.8	118.2%		97.3%
Total	15,713.8	26.7%	17,588.0	29.9%	17,729.8	30.2%	2,016.0	12.8%	141.8	0.8%
Surface Water Maintenance (SV	WM)									
High	19,965.9	34.0%	19,975.5	34.0%	18,183.5	30.9%	-1,782.5	-8.9%	-1,792.1	-9.0%
Moderate	984.2	1.7%	897.8	1.5%	1,910.4	3.3%	926.2	94.1%	1,012.6	112.8%
Total	20,950.1	35.7%	20,873.3	35.5%	20,093.9	34.2%	-856.2	-4.1%	-779.5	-3.7%
Nutrient Transformation (NT)										
High	11,828.1	20.1%	10,139.2	17.3%	10,943.5	18.6%	-884.6	-7.5%	804.3	7.9%
Moderate	4,952.1	8.4%	4,933.0	8.4%	5,130.3	8.7%	178.2	3.6%	197.2	4.0%
Total	16,780.1	28.6%	15,072.2	25.7%	16,073.7	27.4%	-706.4	-4.2%	1,001.5	6.6%
Sediment Retention (SR)										
High	5,627.7	9.6%	5,326.3	9.1%	5,184.3	8.8%	-443.4	-7.9%	-142.0	-2.7%
Moderate	375.9	0.6%	1,707.1	2.9%	1,665.6	2.8%	1,289.8	343.1%	-41.4	-2.4%
Total	6,003.6	10.2%	7,033.4	12.0%	6,850.0	11.7%	846.4	14.1%	-183.4	-2.6%
Carbon Sequestration (CAR)										
High	2,360.4	4.0%	2,593.9	4.4%	2,831.7	4.8%	471.3	20.0%	237.8	9.2%
Moderate	19,175.3	32.6%	18,897.1	32.2%	18,747.9	31.9%	-427.4	-2.2%	-149.1	-0.8%
Total	21,535.7	36.7%	21,491.0	36.6%	21,579.6	36.7%	43.9	0.2%	88.6	0.4%

Questions?

Andy Robertson Project Manager GeoSpatial Services Saint Mary's University of Minnesota

aroberts@smumn.edu 507-450-5598

