Role of Prior Converted Croplands on Nitrate Processing in Agricultural Landscapes

Greg McCarty, Megan Lang, Amir Sharifi, and Xia Li

USDA-ARS Hydrology & Remote Sensing Laboratory

Prior Converted Croplands

- Wetlands that were drained prior to the Swampbuster provisions of the 1985 Food Security Act.
- PCCs can revert to wetland status if land is not cropped for five consecutive years.
- Although drained, substantial evidence for PCCs retaining some wetland character.
- Evidence for biogeochemistry of CPPs being an important determinant of nitrate export.

Field Scale Observations

Drainage Status of PCCs

Crop growth Patterns

Wet year (2015)

Dry year (2010)

- Crop growth patterns reflect different water holding capacities
- Soil biogeochemistry highly dependant on water content

Crop growth vs. Topography

Crop growth vs. Topography

0 20 4	8 0	0 1 2	20 1	60 Matara
				Ivieters

Crop growth vs. Topography

0 20 40	80	120	160
			Meters

Representing depressions in the landscape

May provide a useful tool for mapping PCC's

Mapping Denitrification Potential & SOC Predicted vs. Observed

Denitrification potential map based on a topographic model

Watershed Scale Observations

Choptank Watershed

Subbasin Comparison

Real time water quality monitoring

Greensboro-Tuckahoe Comparison

Subbasin Comparison

Land use

	Total area	Cropland	
Subbasin	km ²	km²	
Greensboro	293	129.9	
Tuckahoe	226	129.3	
Ratio G/T	1.3	1.0	

Land use vs. Drainage Class

Tuckahoe	A (%)	В (%)	C (%)	D (%)
Cropland	0.39	57.10	6.58	35.92
Non-cropland	1.70	37.54	4.41	56.35
Greensboro	A (%)	В (%)	C (%)	D (%)
Cropland	3.07	33.85	19.26	43.82
Non cropland	5.33	19.29	9.35	66.04

Cropland on poorly drained soils (C + D) Tuckahoe subbasin 42 % Greensboro subbasin 63 %

Development of a Conceptual Model

- Watershed parameters are greatly entangled
 - Ex: Cropland area vs. drainage condition

- Streams do not uniformly sample land uses
 Ex: Close association of ditch drainage with cropland
- Ditch drainage only partly modifies drainage status
- A new reference frame is required to disentangle
 - MESA is a metabolite of metolachlor, a common herbicide
 - MESA forms in the vadose zone as does nitrate
 - MESA acts as a conserved transport analog of nitrate

MESA: A Conserved Tracer for Assessing Nitrate Fate

Vadose Zone Associations

- Agricultural nitrogen fate is most related to the local condition of application
 - Vadose zone processes during nitrate movement to groundwater are the most important determinant.
 - Non local groundwater and in stream processes are of secondary importance.

A Critical Watershed Parameter

Study of 15 subwatersheds (HUC 12) with diverse land use and drainage status

% Cropland on Hydric Soils in Subwatershed

Modifying SWAT to Better Represent PCCs in Agricultural Landscapes

Land use and Soil Drainage Class

Implementation of a Conceptual Model

- Can process-based models accurately represent complex landscape interactions?
- We implemented the SWAT model
 - Novel parallel calibration approach for paired basins to constrain model parameters.
 - Use of real time WQ data for Cal/Val
 - Modified the model to better reflect local vadose zone associations (varied denitrification likelihood based on local drainage condition)

Improved Landscape Representation

Soil drainage class

Denitrification (kg/ha/yr)

Conclusions

- High resolution DEMs can help map and characterize the biogeochemistry of PCCs
- PCCs play important role in determining fate of agricultural N in watersheds
- Watershed models such as SWAT can be modified to better represent PCC influence
- Special emphasis should be placed on mapping and conserving PCCs in agricultural landscapes

Collaborations

- USGS Water Science for Maryland, Delaware and District of Columbia: Judy Denver
 - Co-location of water quality sensors at gage sites

• USDA NRCS – Conservation Effects Assessment Project (CEAP) Team: Bill Effland & Lisa Duriancik

