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ABSTRACT

KLEMAS, V., 2011. Remote sensing of wetlands: case studies comparing practical techniques. Journal of Coastal
Research, 27(3), 418-427. West Palm Beach (Florida), ISSN 0749-0208.

To plan for wetland protection and sensible coastal development, scientists and managers need to monitor the changes in
coastal wetlands as the sea level continues to rise and the coastal population keeps expanding. Advances in sensor design
and data analysis techniques are making remote sensing systems practical and attractive for monitoring natural and
man-induced wetland changes. The objective of this paper is to review and compare wetland remote sensing techniques
that are cost-effective and practical and to illustrate their use through two case studies. The results of the case studies
show that analysis of satellite and aircraft imagery, combined with on-the-ground observations, allows researchers to

effectively determine long-term trends and short-term changes of wetland vegetation and hydrology.
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INTRODUCTION AND BACKGROUND

Wetlands and estuaries are highly productive and act as
critical habitats for a variety of plants, fish, shellfish, and other
wildlife. Wetlands also provide flood protection, protection from
storm and wave damage, water quality improvement through
filtering of agricultural and industrial waste, and recharge of
aquifers (Morris et al., 2002; Odum, 1993). However, wetlands
have been exposed to a range of stress-inducing alterations,
including dredge and fill operations, hydrologic modifications,
pollutant runoff, eutrophication, impoundments, and fragmen-
tation by roads and ditches.

Recently, there has also been considerable concern regarding
the impact of climate change on coastal wetlands, especially
due to relative sea level rise, increasing temperatures, and
changes in precipitation. Climate change is considered a cause
for habitat destruction, shift in species composition, and
habitat degradation in existing wetlands (Baldwin and Men-
delssohn, 1998; Titus et al., 2009). Coastal wetlands have
already proved susceptible to climate change, with a net loss of
33,230 acres from 1998 to 2004 in the United States alone
(Dahl, 2006). This loss was primarily due to conversion of
coastal salt marsh to open saltwater. Rising sea levels not only
can cause the drowning of salt marsh habitats but also can
reduce germination periods (Noe and Zedler, 2001). The impact
of global change in the form of accelerating sea level rise and
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more frequent storms is of particular concern for coastal
wetlands managers.

Vegetated wetlands are stable only when the marsh platform
is able to accrete sediment at a rate equal to the prevailing rate
of sea level rise. This ability to accrete is proportional to the
biomass density of the plants, concentration of suspended
sediment, time of submergence, and depth of the marsh surface
and the tidal range. Many coastal wetlands, such as the tidal
salt marshes along the Louisiana coast, are generally within
fractions of a meter of sea level and will be lost, especially if the
impact of sea level rise is amplified by coastal storms. Man-
made modifications of wetland hydrology and extensive urban
development will further limit the ability of wetlands to survive
sea level rise. For instance, man-made channelization of the
Mississippi River flow causes much of the river sediment to be
carried into the Gulf of Mexico, rather than to be deposited in
the wetlands along the Louisiana coast (Farris, 2005; Pinet,
2009).

County, state, and federal officials are concerned about the
impact of climate change and sea level rise on fisheries,
wetlands, estuaries, and shorelines; municipal infrastructure,
such as water, wastewater, and street systems; storm water
drainage and flooding; salinity intrusion into groundwater
supplies; etc. (Nicholas Institute, 2010). To plan for wetland
protection and sensible coastal development, scientists and
managers need to monitor the changes in coastal ecosystems as
the sea level continues to rise and the coastal population keeps
expanding. Recent advances in sensor design and data analysis
techniques are making some remote sensing systems practical
and attractive for monitoring natural and man-induced coastal
ecosystem changes. Hyperspectral imagers can differentiate
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wetland types using spectral bands specially selected for a
given application. High resolution multispectral mappers are
available for mapping small patchy upstream wetlands.
Thermal infrared scanners can map coastal water tempera-
tures, while microwave radiometers can measure water
salinity, soil moisture, and other hydrologic parameters.
Synthetic Aperture Radars (SAR) help distinguish forested
wetlands from upland forests. Airborne light detection and
ranging (LIDAR) systems can be used to map wetland
topography, produce beach profiles and bathymetric maps
(Purkis and Klemas, 2011; Ramsey, 1995).

With the rapid development of new remote sensors, databas-
es, and image analysis techniques, there is a need to help
potential users choose remote sensors and data analysis
methods that are most appropriate and practical for wetland
studies (Phinn et al., 2000). The objective of this paper is to
review and compare wetland remote sensing techniques that are
cost-effective and practical and to illustrate their use through
two case studies. The wetland sites and projects selected for the
case studies are facing environmental problems, such as urban
development in their watersheds or major vegetation and
hydrologic changes due to rapid local sea level rise.

WETLAND AND LAND COVER MAPPING

For more than three decades, remote sensing techniques
have been used successfully by academic researchers and
government agencies to map and monitor wetlands (Dahl,
2006; Tiner, 1996). For instance, the U.S. Fish and Wildlife
Service (FWS) has used remote sensing techniques to deter-
mine the biologic extent of wetlands for the past 30 years.
Through its National Wetlands Inventory, FWS has provided
federal and state agencies, the private sector, and citizens with
scientific data on wetlands location, extent, status, and trends.
To accomplish this important task, FWS has used multiple
sources of aircraft and satellite imagery and on-the-ground
observations (Tiner, 1996). Most states have also conducted a
range of wetland inventories, using both aircraft and satellite
imagery. The aircraft imagery frequently included natural
color and color infrared images. The satellite data consisted of
both high-resolution (1-4 m) and medium-resolution (10-30 m)
multispectral imagery.

More recently, the availability of high spatial and spectral
resolution satellite data has significantly improved the capac-
ity for upstream wetland, salt marsh, and other coastal
vegetation mapping (Jensen et al., 2007; Wang, Christiano,
and Traber, 2010). Furthermore, new techniques have been
developed for mapping wetlands and even identifying wetland
types and plant species (Jensen et al., 2007; Klemas, 2009;
Schmidt et al., 2004; Yang et al., 2009). Using hyperspectral
imagery and narrow-band vegetation indices, researchers have
been able to identify some wetland species and to make
progress on estimating biochemical and biophysical parame-
ters of wetland vegetation, such as water content, biomass, and
leaf area index (Adam, Mutanga, and Rugege, 2010). Hyper-
spectral imagers may provide several hundred spectral bands;
multispectral imagers use less than a dozen bands.

The integration of hyperspectral imagery and LIDAR-
derived elevation has also significantly improved the accuracy

of mapping salt marsh vegetation. The hyperspectral images
help distinguish high marsh from other salt marsh communi-
ties, using its high reflectance in the near-infrared region of the
spectrum, and the LIDAR data help separate invasive
Phragmites australis from low marsh plants (Yang and
Artigas, 2010). Major plant species within a complex, hetero-
geneous tidal marsh have been classified using multitemporal,
high-resolution QuickBird images, field reflectance spectra,
and LIDAR height information. Phragmites, Typha, and
Spartina patens were spectrally distinguishable at particular
times of the year, likely due to differences in biomass and
pigments and the rate at which these change throughout the
growing season. Classification accuracies for Phragmites were
high due to the uniquely high near-infrared reflectance and the
height of this plant in the early fall (Gilmore et al., 2010).

High-resolution imagery is more sensitive to within-class
spectral variance, making separation of spectrally mixed land
cover types more difficult than when using medium-resolution
imagery. Therefore, pixel-based techniques are sometimes
replaced by object-based methods, which incorporate spatial
neighborhood properties by segmenting or partitioning the
image into a series of closed objects that coincide with the
actual spatial pattern and then classifying the image. “Region
growing” is among the most commonly used segmentation
methods. This procedure starts with the generation of seed
points over the whole scene, followed by grouping of neighbor-
ing pixels into an object under a specific homogeneity criterion.
Thus, the object keeps growing until its spectral closeness
metric exceeds a predefined break-off value (Kelly and Tuxen,
2009; Shan and Hussain, 2010; Wang, Sousa, and Gong, 2004).

Wetland health is strongly affected by runoff from land and
its use within the same watershed. To study the impact of land
runoff on estuarine and wetland ecosystems, a combination of
models is frequently used, including watershed, hydrodynam-
ic, water quality, and living resource models (Li et al., 2006;
Linker et al., 1993). Most coastal watershed models require
land cover or land use as an input. Knowing how the land cover
is changing, these models, together with a few other inputs like
slope and precipitation, can predict the amount and type of
runoff into rivers, wetlands, and estuaries and how their
ecosystems will be affected (Jensen, 2007). For instance, some
models predict that severe degradation in stream water quality
will occur when the agricultural land use in watersheds
exceeds 50% or urban land use exceeds 20% (Tiner et al., 2000).

The Landsat Thematic Mapper (TM) has been a reliable
source for land cover data (Lunetta and Balogh, 1999). Its 30-m
resolution and spectral bands have proved adequate for
observing land cover changes in large coastal watersheds
(e.g., Chesapeake Bay). Figure 1 shows a land cover map of the
Chesapeake Bay watershed derived from Landsat Enhanced
Thematic Mapper Plus (ETM+) imagery. Thirteen land cover
classes are mapped in Figure 1, including two wetland classes.
Other satellites with medium-resolution imagers can also be
used (Klemas, 2005).

As shown in Figure 1, the Chesapeake Bay watershed
contains many streams and, consequently, upstream freshwa-
ter wetlands. Upstream wetlands are no less valuable than
tidal marshes because they (1) improve the water quality of
adjacent rivers by removing pollutants; (2) reduce velocity,
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Figure 1. Chesapeake Bay watershed map of land cover types produced from multitemporal Landsat ETM+ imagery for 2000. (Modified with permission

from Goetz et al., 2004.)

erosion, and peak flow of floodwaters downstream; (3) provide
habitat for wildlife; (4) serve as spawning and nursery grounds
for many species of fish; and (5) contribute detritus to the
aquatic food chain.

Originally, the Clean Water Act protected tidal marshes and
freshwater wetlands. However, since the Supreme Court
decisions in the SWANCC (2001) and Carabell/Rapanos
(2006) cases, many isolated freshwater wetland are no longer
protected by the Clean Water Act. State wetland managers are
interested in how to find these wetlands, how to assess their
ecologic integrity, and how to use this information to protect
them and improve their condition or restore them (Tiner et al.,

2002). However, freshwater wetlands are small, patchy, and
spectrally impure. Medium-resolution sensors, such as Landsat
TM, miss some of these patchy wetlands and produce too many
mixed pixels, increasing errors. Therefore, to map upstream,
freshwater wetlands, managers needs high spatial resolution
and, in some cases, hyperspectral imagery. As a result, most
upstream, freshwater wetlands are not mapped in Figure 1.
A typical digital image analysis approach for classifying
coastal wetlands or land cover is shown in Figure 2. Before
analysis, the multispectral imagery must be radiometrically
and geometrically corrected. The radiometric correction reduc-
es the influence of haze and other atmospheric scattering
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Figure 2. Typical image analysis approach.

particles and any sensor anomalies. The geometric correction
compensates for the Earth’s rotation and for variations in the
position and attitude of the satellite. Image segmentation
simplifies the analysis by first dividing the image into
homogeneous patches or ecologically distinct areas. Supervised
classification requires the analyst to select training samples
from the data that represent the themes to be classified
(Jensen, 1996). The training sites are geographic areas
previously identified using field visits or other reference data,
such as aerial photographs. The spectral reflectances of these
training sites are then used to develop spectral “signatures,”
which are used to assign each pixel in the image to a thematic
class.

Next, an unsupervised classification is performed to identify
variations in the image not contained in the training sites. In
unsupervised classification, the computer automatically iden-
tifies the spectral clusters representing all features on the
ground. Training site spectral clusters and unsupervised
spectral classes are then compared and analyzed using cluster
analysis to develop an optimum set of spectral signatures. Final
image classification is then performed to match the classified
themes with the project requirements (Jensen, 1996). Through-
out the process, ancillary data are used whenever available
(e.g., aerial photos, maps, and field samples).

When studying small wetland sites, researchers can use
aircraft or high-resolution satellite systems (Klemas, 2005).
Airborne georeferenced digital cameras, providing color and
color infrared digital imagery, are particularly suitable for
accurate mapping or interpreting satellite data. Most digital
cameras are capable of recording reflected visible to near-
infrared light. A filter is placed over the lens that transmits
only selected portions of the wavelength spectrum. For a single-
camera operation, a filter is chosen that generates natural color
(blue—green—-red wavelengths) or color-infrared (green—red—
near-infrared wavelengths) imagery. For a multiple-camera
operation, filters that transmit narrower bands are chosen. For
example, a four-camera system may be configured so that each
camera filter passes a band matching a specific satellite
imaging band, e.g., blue, green, red, and near-infrared bands

matching the bands of the IKONOS satellite multispectral
sensor (Ellis and Dodd, 2000).

Digital camera imagery can be integrated with global
positioning system position information and used as layers in
a geographic information system for a range of modeling
applications (Lyon and McCarthy, 1995). Small aircraft flown
at low altitudes (e.g., 100—500 m) can be used to supplement
field data. High-resolution imagery (0.6—4 m) can also be
obtained from satellites, such as IKONOS and QuickBird
(Table 1). However, cost becomes excessive if the site is larger
than a few hundred square kilometers. In those cases, medium-
resolution sensors, such as Landsat TM (30 m) and Satellite
Pour I'Observation de la Terre (SPOT) (20 m), become more
cost-effective.

Mapping submerged aquatic vegetation (SAV), coral reefs,
and general bottom characteristics requires high-resolution (1—
4 m) multispectral or hyperspectral imagery (Mishra et al.,
2006; Mumby and Edwards, 2002; Purkis et al., 2002). Coral
reef ecosystems usually exist in clear water and can be
classified to show different forms of coral reef, dead coral, coral
rubble, algal cover, sand, lagoons, different densities of sea
grasses, etc. SAV sometimes grows in more turbid water and
thus is more difficult to map. Aerial hyperspectral scanners
and high-resolution multispectral satellite imagers, such as
IKONOS and QuickBird, have been used in the past to map
SAV with accuracies of about 75% for classes including high-
density sea grass, low-density sea grass, and unvegetated
bottom (Akins, Wang, and Zhou, 2010; Dierssen et al., 2003;
Wolter, Johnston, and Niemi, 2005).

MONITORING WETLAND CHANGES

To identify long-term trends and short-term variations, such
as the impact of rising sea levels and hurricanes on wetlands,
researchers need to analyze time series of remotely sensed
imagery. The acquisition and analysis of time series of
multispectral imagery is a difficult task. The imagery must
be acquired under similar environmental conditions (e.g., same
time of year and sun angle) and in the same or similar spectral
bands. There are changes in both time and spectral content.
One way to approach this problem is to reduce the spectral
information to a single index, reducing the multispectral
imagery into one field of the index for each time step. In this
way, the problem is simplified to the analysis of time series of a
single variable, one for each pixel of the images.

The most common index used is the Normalized Difference
Vegetation Index (NDVI), which is expressed as the difference
between the red and the near-infrared reflectances divided by
their sum. These two spectral bands represent the most
detectable spectral characteristic of green plants. This is
because the red (and blue) radiation is absorbed by the
chlorophyll in the surface layers of the plant (Palisade
parenchyma) and the near-infrared is reflected from the inner
leaf cell structure (Spongy mesophyll) as it penetrates several
leaf'layers in a canopy. Thus, the NDVI can be related to plant
biomass or stress, since the near-infrared reflectance depends
on the abundance of plant tissue and the red reflectance
indicates the surface condition of the plant. It has been shown
by researchers that time series of remote sensing data can be
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Table 1. High-resolution satellite parameters and spectral bands.*

IKONOS QuickBird OrbView-3 WorldView-1 GeoEye-1 WorldView-2
Sponsor Space Imaging DigitalGlobe Orbimage DigitalGlobe GeoEye DigitalGlobe
Launched Sept. 1999 Oct. 2001 June 2003 Sept. 2007 Sept. 2008 Oct. 2009
Spatial Resolution (m)
Panchromatic 1.0 0.61 1.0 0.5 0.41 0.5
Multispectral 4.0 2.44 4.0 NA 1.65 2
Spectral Range (nm)
Panchromatic 525-928 450-900 450-900 400-900 450-800 450-800
Coastal blue NA NA NA NA NA 400-450
Blue 450-520 450-520 450-520 NA 450-510 450-510
Green 510-600 520-600 520-600 NA 510-580 510-580
Yellow NA NA NA NA NA 585-625
Red 630-690 630-690 625-695 NA 655-690 630-690
Red edge NA NA NA NA NA 705-745
Near-infrared 760-850 760-890 760-900 NA 780-920 770-1040
Swath width (km) 11.3 16.5 8 17.6 15.2 16.4
Off nadir pointing (°) +26 +30 +45 +45 +30 +45
Revisit time (d) 2.3-3.4 1-3.5 1.5-3 1.7-3.8 2.1-8.3 1.1-2.7
Orbital altitude (km) 681 450 470 496 681 770

*From DigitalGlobe (2003), Orbimage (2003), Parkinson (2003), and Space Imaging (2003).

used effectively to identify long-term trends and subtle changes
of NDVI by means of principal component analysis (Jensen,
2007; Young and Wang, 2001; Yuan, Elvidge, and Lunetta,
1998).

The preprocessing of multidate sensor imagery, when
absolute comparisons among different dates are to be carried
out, is more demanding than the single-date case. It requires a
sequence of operations, including calibration to radiance or at-
satellite reflectance, atmospheric correction, image registra-
tion, geometric correction, mosaicking, subsetting, and mask-
ing out clouds and irrelevant features. In the preprocessing of
multidate images, the most critical steps are the registration of
the multidate images and their radiometric rectification. To
minimize errors, registration accuracies of a fraction of a pixel
must be attained. The second critical requirement for change
detection is attaining a common radiometric response for the
quantitative analysis for one or more of the image pairs
acquired on different dates. This means that variations in solar
illumination, atmospheric scattering and absorption, and
detector performance must be normalized, i.e., the radiometric
properties of each image must be adjusted to those of a
reference image (Coppin et al., 2004; Lunetta and Elvidge,
1998).

Detecting changes between two registered and radiometri-
cally corrected images from different dates can be accomplished
by employing one of several techniques, including postclassi-
fication comparison and spectral image differencing (change
detection). In postclassification comparison, two images from
different dates are independently classified. The two maps are
then compared pixel by pixel. This avoids the difficulties in
change detection associated with the analysis of images
acquired at different times of the year or day or by different
sensors, thereby minimizing the problem of radiometric
calibration across dates. One disadvantage is that every error
in the individual date classification maps is also present in the
final change detection map (Dobson et al., 1995; Jensen, 1996;
Lunetta and Elvidge, 1998).

Spectral change detection (spectral image differencing) is the
most widely applied change detection algorithm. Spectral
change techniques rely on the principle that land cover changes
result in changes in the spectral signature of the affected land
surface. These techniques involve the transformation of two
original images to a new single-band or multiband image in
which the areas of spectral change are highlighted. This is
accomplished by subtracting one date of raw or transformed
(e.g., vegetation indices or albedo) imagery from a second date
that has been precisely registered to the image of the first date.
Pixel difference values exceeding a selected threshold are
considered changed. A change-no change binary mask is
overlaid onto the second date image, and only the pixels
labeled as having changed are classified in the second date
imagery. While the unchanged pixels remain in the same
classes as in the first date imagery, the spectrally changed
pixels must be further processed by other methods, such as a
classifier, to produce a labeled land cover change map. This
approach eliminates the need to identify land cover changes in
areas where no significant spectral change has occurred
between the two dates of imagery (Coppin et al., 2004; Jensen,
1996; Yuan, Elvidge, and Lunetta, 1998). However, to obtain
accurate results, radiometric normalization must be applied to
one date of imagery to match the radiometric condition of the
two dates of data before image subtraction. An evaluation of the
spectral image differencing and the post-classification compar-
ison change detection algorithms is provided by Macleod and
Congalton (1998).

The spectral change (image differencing) detection methods
and the classification-based methods are often combined in a
hybrid approach. For instance, spectral change detection can
be used to identify areas of significant spectral change, and
then postclassification comparison can be applied within areas
where spectral change was detected to obtain class-to-class
change information. As shown in Figure 3, change analysis
results can be further improved by including probability
filtering that allows only certain changes and forbids others
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(e.g., urban to forest). A detailed, step-by-step procedure for
performing change detection was developed by the National
Oceanic and Atmospheric Administration’s (NOAA’s) Coastal
Change Analysis Program and is described in Dobson et al.
(1995) and Klemas et al. (1993).

CASE STUDIES

The following two case studies were selected to illustrate and
compare the use of practical remote sensing techniques for
studying key problems at different wetland sites and to try to
answer wetland managers’ questions, such as the following: (1)
How are urban sprawl and development affecting wetlands in
coastal watersheds? (2) How is accelerated local sea level rise
changing the vegetation, inundation levels, and hydrology in
tidal wetlands? (3) Should one intervene in the hydraulic
regime by channel modification to accelerate or delay marsh
development in a particular direction?

The case studies do not represent all possible uses of remote
sensing in wetlands but are typical of some problems
encountered by wetland scientists and managers. The choice
of case studies was also based on the author’s personal
experience.

Remote Sensing Applications Assessment
Project (RESAAP)

Managers of NOAA’s National Estuarine Research Reserve
System (NERRS) have a continuing need to use remote sensing
to address typical questions, such as the following: (1) What is
the extent of emergent, intertidal, and submerged habitats? (2)
How are the emergent, intertidal, and submerged habitats
changing? (3) How are suburban sprawl and coastal develop-
ment affecting reserve watersheds? (4) How have invasive
plants affected habitat? (5) How diverse is each NERRS site in
terms of habitat types?

While remote sensing was being actively used within
NERRS, the multitude of new satellite and aircraft sensors
and image analysis techniques that are becoming available
make it difficult for research reserve managers to select the

most cost-effective sensing and analysis techniques. Therefore,
in 2004, NOAA’s NERRS program funded a team of remote
sensing experts to compare the cost, accuracy, reliability, and
user-friendliness of four remote sensing approaches for
mapping land cover, emergent wetlands, and SAV. Four
NERRS test sites were selected for the project, including the
Ashepoo, Combahee, and South Edisto Basin, South Carolina;
Grand Bay, Michigan; St. Jones River and Blackbird Creek,
Delaware; and Padilla Bay, Washington (Porter et al., 2006).
The research described here was primarily conducted at
Delaware’s St. Jones River and Blackbird Creek NERRS sites,
where wetland changes at the sites and the land cover of their
watersheds were studied and mapped.

The Blackbird Creek study site consists of the estuarine and
freshwater tidal wetlands within the Blackbird Creek drainage
basin and some contiguous wetland areas from two adjacent
drainage basins. The study area is approximately 100 km? and
covers 19.1 km (11.9 mi.) of the creek. Blackbird Creek is
located in southern New Castle County, Delaware, and the
upper Blackbird Creek is one component of Delaware’s NERRS
sites. The upland land use in Blackbird Creek basin is
primarily agriculture (51%) and forested (48%), with a small
proportion of developed land (1%). Within the wetlands of
Blackbird Creek, the amount of direct physical alteration—
diking, ditching, channel straightening, and impounding—has
been minimal compared to that at many other coastal wetlands
in Delaware (Field and Philipp, 2000Db).

The Delaware St. Jones River NERRS study site provides a
contrast to the Blackbird Creek site in several ways. The total
area of the study site is approximately 80 km?, and it covers
14.3 km (8.9 mi.) of the main river channel. The amount of
agriculture in the St. Jones River basin is 51%, forested area is
38%, and developed land equals 11%, including higher-density
residential areas and commercial or industrial developments.
The St. Jones River has been subjected to much direct human
manipulation. The natural course of the river’s main channel
has been straightened, and parallel grid ditches were dug in a
portion of the wetlands for mosquito control. These hydrologic
alterations have undoubtedly affected the wetland ecosystem
structure and functions in this river.

The RESAAP team also included scientists from the
University of South Carolina and NOAA who were performing
similar studies of emergent wetlands and SAV at three other
NERRS sites (Porter et al., 2006). Results were compared to
determine which imagery and analysis approach should be
recommended for use at other NERRS sites.

The four remote sensing systems evaluated were the
hyperspectral airborne imaging spectrometer for applications
(AISA), an aerial multispectral (ADS 40) digital modular
camera, the IKONOS (or QuickBird) high-resolution satellite,
and Landsat TM. A comparison of approximate data acquisi-
tion costs is shown in Table 2. The high-resolution imagery per
square kilometer of coverage is much more expensive than the
medium-resolution imagery.

Completed in 2006, this study found that aerial hyperspec-
tral image analysis is too complicated for typical NERRS site
personnel and the imagery is too expensive for large NERRS
sites or entire watersheds. Furthermore, it was difficult to
discriminate wetlands species even with hyperspectral imag-
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Table 2. Imagery acquisition costs (Porter et al., 2006).

Description Resolution (m) Other Features Cost ($/km?)
Digital camera imagery, ADS40 0.3 Cell area = 2.3 X 2.3 km 330
Aerial hyperspectral, AISA 2.3 Swath width = 600 m; spectral channels = 35 (0.44-0.87 um) 175
High-resolution satellite, IKONOS 1-4 Swath width = 13 km 30
Medium-resolution satellite, Landsat TM 30 Swath width = 180 km 0.02 ($600 per scene)

ery (Porter et al., 2006). Due to different sun angles for each
flight strip, a separate atmospheric correction had to be
implemented for each strip. Also, the aircraft roll due to wind
conditions produced uneven swaths.

In the NERRS study, the highest accuracy for mapping
clusters of different plant species over small critical areas was
obtained by visually analyzing orthophotos produced by
airborne digital cameras. The visual interpretation was
performed after image segmentation and with the help of field
training sites visited before and after the interpretation
process. For larger sites, combining IKONOS and Landsat
TM proved cost-effective and user-friendly. The Landsat TM
imagery was used to map land cover for the large site or entire
watershed, and the IKONOS high-resolution imagery was used
for detailed mapping of critical NERRS areas or those
identified by Landsat TM as having changed. A particularly
effective technique developed by the team is based on using
biomass change as a wetland change indicator (Porter et al.,
2006; Weatherbee, 2000).

Monitoring Accelerated Local Sea Level Rise
in Wetlands

The primary objectives of this project were to study changes
at a unique Delaware Bay tidal wetland site, which faces an
accelerated sea level rise due to a canal breach, and to show
how remote sensors and related techniques can be used for
studying the impact of sea level rise and man-made influences
on coastal wetlands. The improved understanding of the
processes occurring at this rapidly changing site will help
wetland managers decide whether to intervene in the hydraulic
regime by channel modification to accelerate or delay marsh
development in a particular direction.

The study site was the Milford Neck Conservation Area
(MNCA), which is located along the southwestern shore of
Delaware Bay. It contains 10,000 acres of tidal marsh and 9 mi.
of shoreline. The complex, dynamic landscape of this site is
characterized by a transgressing shoreline, extensive tidal
wetlands, island hammocks, and upland forests. A canal
(Greco’s Canal) separates the site from a narrow barrier beach
along Delaware Bay. Recent changes in the shoreline and tidal
marsh have resulted in dramatic habitat conversion and loss
that may have significant immediate and long-term impacts on
the biologic resources and ecologic integrity of the MNCA (Field
and Philipp, 2000b).

The barrier beach of the MNCA was breached during the
winter of 1985-86, making a direct connection between
Delaware Bay and Greco’s Canal. Before the breach, the
hydraulic regime of the marsh west of Big Stone Beach was
controlled through the canal to the Mispillion River far to the

south (Figure 4). The breach through the barrier beach
resulted in a shorter and direct linkage of the marsh to the
tidal forcing of Delaware Bay. This has changed the tide
regimes experienced in the various sections of the marsh and
the resulting patterns of tide marsh vegetation.

A newly established gravel sill in the mouth of the canal at
the breach seems to regulate the interior hydrology by
establishing base water levels in Greco’s Canal, which are
higher than low water levels in the bay. Continuing beach
overwash and continuing westward migration of the beach
provide a source of sand and gravel to maintain and enlarge the
sill. The sill is growing northward in the canal in response to
the large hydraulic head established during spring tide and
storms in the bay. During ebb tide, the sill can be only slowly
eroded because of the relatively small hydraulic head above the
sill to drive drainage from a lagoon (Field and Philipp, 2000a).
As shown in Figure 4, AISA hyperspectral and IKONOS
satellite imagery was used to determine that in just 2 years,
from 1999 to 2001, the area of open water plus scoured mud
bank increased by about 50% due to the increased tidal flushing
after the canal breach. Since the canal breach allowed tidal
waters to flow directly into the marshes, the average width of
some major creeks changed from 5.1 to 7.3 m and the bank
widths affected by tidal scouring increased from about 9.1 to
16.2 m. On the right sides of the images, you can clearly see
Grecos Canal and the breach connecting it to Delaware Bay
(Field and Philipp, 2000a).

At the MNCA site, there has been a general trend for high
salt marsh to be replaced by lower salt marsh vegetation,
mudflats, and open water. Thus, there are decreases in the
extent of salt hay cover (S. patens and Distichlis spicata) and
increases in the expanse of open water, mudflats, Spartina
alterniflora, and Phragmites australis. The less desirable
common reed (P. australis) has been expanding despite
treatments with herbicides since 1999. Large areas of tidal
marsh NW of the breach have become permanently inundated
and converted into subtidal marsh. Analysis of Landsat TM
images for 1984 and 1993 shows that the area of open water
west of Greco’s Canal has increased from about 40 to 160 ha,
with a corresponding loss of highly productive S. alterniflora
marsh. The area of open water and mudflats lying to the east of
the canal has also increased dramatically during this period.
Vegetation bordering natural ponds within the marsh and near
the interface of marsh and upland forest shifted toward a less
diverse, more salt-tolerant community (Field and Philipp,
2000a).

The general direction of the vegetation changes was not
surprising; i.e., uplands changed to high marsh, high marsh
changed to low marsh, and low marsh was in many places
inundated to produce open water and mudflats. What was

Journal of Coastal Research, Vol. 27, No. 3, 2011



Remote Sensing of Wetlands 425

Figure 4. Images showing vegetation, inundation, and hydrologic changes at the MNCA site between 1999 and 2001. (Left) An AISA hyperspectral image of
1-m resolution obtained on 18 September 1999. (Right) An IKONOS satellite image of merged 1-4-m resolution captured on 24 August 2001. (Modified from

Field and Philipp, 2000a.)

surprising was the rapid pace at which these changes took
place as the “accelerated” local sea level kept rising.

SUMMARY AND CONCLUSIONS

The advent of new satellite and airborne remote sensing
systems having high spectral (hyperspectral) and spatial
resolutions, has improved our capacity for mapping upstream
wetlands, salt marshes, and general coastal vegetation. Using
hyperspectral imagery and narrow-band vegetation indices,
researchers have been able to identify some wetland species
and to make progress on estimating biochemical parameters of
wetland vegetation, such as water content, biomass, and leaf
area index. The higher spatial resolution makes it possible to
study small critical sites, including rapidly changing or patchy
upstream wetlands.

The integration of hyperspectral imagery and LIDAR-
derived data has improved the accuracy of mapping salt marsh
vegetation and can also provide information on marsh
topography, beach profiles, and bathymetry. High-resolution
synthetic aperture radar allows researchers to distinguish
between forested wetlands and upland forests.

Since wetlands and estuaries have high spatial complexity
and temporal variability, satellite observations must usually be

supplemented by aircraft and field data to obtain the required
spatial, spectral, and temporal resolutions. Similarly, mapping
coral reefs and SAV requires high-resolution satellite or
aircraft imagery and, in some cases, hyperspectral data.

To identify long-term trends and short-term variations, such
as the impact of rising sea levels and hurricanes on wetlands,
researchers need to analyze time series of remotely sensed
imagery. The images must be acquired under similar environ-
mental conditions (e.g., same time of year and sun angle) and in
similar spectral bands. In the preprocessing of multidate
images. the most critical steps are the registration of the
multidate images and their radiometric rectification. To
minimize errors, registration accuracies of a fraction of a pixel
must be attained. To detect changes between two corrected
images from different dates several techniques can be
employed, including postclassification comparison and spectral
image differencing.

The two case studies presented in this paper clearly
illustrate the practical aspects of wetland remote sensing. In
the NERRS study, the highest accuracy for mapping clusters of
different plant species over small critical areas was obtained by
visually analyzing orthophotos produced by airborne digital
cameras. To achieve cost-effectiveness, Landsat TM imagery
was used to map land cover for large sites or entire watersheds,
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and IKONOS high-resolution imagery was used only for
detailed mapping of critical NERRS areas or those identified
by Landsat TM as having changed. The changes observed in
the satellite imagery include land cover change, buffer
degradation, wetland loss, biomass change, wetland fragmen-
tation, and invasive species expansion.

In a study of changes at a unique Delaware Bay tidal wetland
site, which faces an accelerated sea level rise due to a canal
breach, satellite and airborne digital sensors of 1- and 2-m
ground resolution enabled researchers to track annual changes
in the details of the vegetation patterns and hydrologic
networks. For instance, by comparing AISA hyperspectral
imagery with 1- and 4-m resolution IKONOS images acquired
in October 2000 and September 2001, respectively, it was
possible to measure major changes in the width of tide
channels, width of scoured creek banks, areas of open water,
and length of open water (Figure 4). Analysis of Landsat TM
images, acquired over a decade, were used to determine that
the area of open water to the west of Greco’s Canal had
increased from 40 to 160 ha. (Field and Philipp, 2000a).The
case studies showed that satellite and aircraft remote sensors,
supported by a reasonable number of site visits, are suitable
and practical for mapping and studying coastal wetlands,
including long-term trends and short-term changes of vegeta-
tion and hydrology. Some practical recommendations can be
made, based on the results of the case studies:

(1) The cost per square kilometer of imagery and its analysis
rises rapidly with the shift from medium- to high-
resolution imagery. Therefore, large wetland areas or
entire watersheds should be mapped using medium-
resolution sensors (e.g., Landsat TM at 30 m), and only
small, critical areas should be examined with high-
resolution sensors (e.g., IKONOS at 1-4 m).

(2) Multispectral imagery should be used for most applica-
tions, with hyperspectral imagery reserved for difficult
species identification cases, larger budgets, and highly
experienced image analysts.

(3) Airborne digital camera imagery is not only useful for
mapping coastal land cover but also helpful in interpret-
ing satellite images.

(4) The combined use of LIDAR and hyperspectral imagery
can improve the accuracy of wetland species discrimina-
tion and provide a better understanding of the topogra-
phy, bathymetry, and hydrologic conditions.

(5) High-resolution imagery is more sensitive to within-class
spectral variance, making separation of spectrally mixed
land cover types more difficult. Therefore, pixel-based
techniques are sometimes replaced by object-based
methods, which incorporate spatial neighborhood prop-
erties (Shan and Hussain, 2010; Wang, Sousa, and Gong,
2004).
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