Pre-Disaster Mitigation and Watershed Resiliency within Wisconsin's Lake Superior Basin

Andy Robertson

Executive Director

Kyle Magyera

Local Government Outreach Specialist

Air Fox Photography, LLC (John Buval

Wisconsin's Lake Superior Basin

- Young geology glacial lake Duluth shoreline and sediments
- Rising topography with steep drops flowing towards the Lake
- Pre-settlement forest cover
- Forest clear-cutting for wood products
- Agricultural land clearing
- Imposed drainage for dewatering fields
- Streams prone to sedimentation and erosion
- Increased storm intensity and precipitation

Community of Practice

- Flood Attenuation
- Natural Habitat Degradation
- Infrastructure Damage
- Economic Impacts
- Federal, State, Local Gov't
- Landowners
- Stakeholders
- Body of Science Knowledge

Slow-the-Flow Initiative

- Changes in Land use and land cover altered hydrology and sediment delivery
- Loss of traditional cover increased flood magnitude and intensity
- Decline in storage (vegetation and wetlands) increased runoff
- Increase in bluff erosion, stream incisions, steep valley walls and downcutting
- Sediment plumes at river mouths and in Lake Superior

Landscape Level Assessments

Focus on landscape level approaches to reduce peak flows

- Wetland Inventory
- Functional Assessment
- Increase in-channel roughness
- Increase upland roughness
- Increase upland storage and infiltration

Potentially Restorable Wetlands

Douglas County Lake Superior Basin Saint Louis Ν Middle Conne Little Amnico Lower Black Balsan Percent Wetland Loss, HU1 <10% 10 - 15% 15 - 20% 20 - 25% >25 Urban Area Douglas County Land Conservation This Map is for Informational Purposes Only Miles Prepared March 2016

Watersheds with the highest amount of wetland loss

Watersheds with Open Lands

Watersheds that are more than 40% open land cover

Open land cover includes agriculture, forest stands less that 16 yrs. old and urban areas

Wetland/Open Lands Combined

Priority locations for future wetland restoration projects

Watershed	Wetland Loss (%)	Number sub watersheds > 40% open land
Bardon Creek	26.5	15
Poplar River	21.1	4
Lower Amnicon		
River	20.8	6
Copper Creek	18.5	3
Upper Brule		
River	18.4	1
Lower Nemadji		
River	16.7	3
Balsam Creek	15.4	1
Lower Brule		
River	15.4	2

Calculating Peak Discharge

- Increased large storms
- Increased in-channel and bluff erosion
- Calculated 2-year peak discharge to drainage area ratio
- Prioritize management actions: wetland restoration, ag. BMP's, in-channel restoration, upland roughness

Increase Water Storage

- Increase flow duration
- Moderate peak flows
- Wetland restoration in both forested and ag. settings
- De-synchronize flow events

Above: Distribution of PRWs that can provide flood attenuation functions in Douglas Co. Analysis and image provided by St. Mary's Geospatial Services .

Town of Ashland

- -Almost every culvert washed out
- -Lean budget, dependent on loans

Erosion-Induced Drainage

- + headcuts
- + gullying
- + ravine erosion
- = loss of watershed storage= disconnected floodplains

Frame the problem, urgency, and solutions

Drivers of Stream Power

Connected floodplain system:

- sedge meadows
- deep accumulation of sediments elevated water table

Disconnected floodplain system:

- conversion to sagebrush
- lowered water table
- intermittent streamflow

Slide Credit: Colin Thorne

"...before European settlement, the streams were small, anabranching channels within extensive, vegetated wetlands"

Slide Credit: Colin Thorne

Walter, R.C. and Merritts, D.J., 2008. Natural streams and the legacy of water-powered mills. Science, 319(5861), pp.299-304.

Figure from: Hauser et al. 2016 Science Advances

FEMA PDM Project – Ashland Co.

-Culvert Community of Practice (NOAA Project of Special Merit)

—Pilot fluvial erosion hazards methods with consideration of wetlands

-Prioritize restoration potential

-Diversify stakeholder engagement

Natural Flood Management

Assess 4 types of connectivity

Slide Credit: Colin Thorne

Natural Flood Management Clare Dir

Uplands/steep slopes

Floodplain

In-channel

Clare Dinnis FCRM Strategy

Understand Pre-Disturbed Conditions

Slide Credit: Colin Thorne

Visualize Historic Features

FLOW

Pre-project Base Flow Wetted Area (11 acres)

Post-project Base Flow Wetted Area (50 acres; 350% increase)

Slide Credit: Colin Thorne

Dynamic Flow Modeling

GRAPHIC: V. ALTOUNIAN/*SCIENCE* 'A stream comes back to life' *SCIENCE* 360: 1058 (2018) DOI: 10.1126/science.360.6393.1058

Scale and Applicability of Floodplain Maps & Functional Assessments

grans – regulatory, technical, outrach, and funding assistance provided by government agencies and/or woos

Projects = restoration of wetland/floodplain functions and/or conservation / land use regulation that protects wetland/floodplain functions

Partnerships = agencies and organizations working together across organizational and geographic scales to co-develop data, functional assessments, science needs, technology, funding and continuity for watercourses that cross jurisdictional boundaries

#SciComm

- Invest in coordination, crosscultural communication
- Tread lightly with decision support tools
- Empower local action, with *right* expertise
- Sideline biases
- Design Charrette

Acknowledgments

- St. Mary's of U of MN Geospatial Services (Andy Robertson, Kevin Stark, Kevin Benck)
- Superior Rivers Watershed Association (Tony Janisch, Kevin Brewster)
- WI DNR (Michele Wheeler, Tom Bernthal, Chris Smith)
- Ashland and Bayfield LWCDs (MaryJo Gingras, Tom Fratt, Ben Dufford)
- Northwest Regional Planning Commission (Jason Laumann)
- USGS (Faith Fitzpatrick), EPA (Tom Hollenhorst)
- WCMP (Kate Angel), DOA (Jim Giglierano)
- NRCS (Kent Peña), USFS (Dale Higgins)
- Nat'l Park Service (Ulf Gafvert, Al Kirschbaum)
- Association of State Floodplain Managers (Jeff Stone, Al Lulloff, Bill Brown)
- Ben Goldfarb (author, Eager: The Suprising, Secret Life of Beavers and Why They Matter)
- Colin Thorne (University of Nottingham)

Wisconsin Coastal Management Program

