Using the Field Indicators to Assess Long-Term Hydrology

Bruce Vasilas University of Delaware

Objective of this Presentation

- To gain an appreciation for the potential use of Field Indicators of Hydric Soils to assess hydrologic characteristics of individual wetlands.
- Not to learn the Field Indicators.

Can we accurately characterize wetland hydrology in one visit?

Field Indicators of Hydric Soils

- Soil morphology reflects long-term hydrologic conditions.
- Basis for Field Indicators of Hydric Soils
- How closely do individual indicators reflect a discrete set of hydrologic conditions?
- Can the Field Indicators be used to characterize hydroperiods beyond the standard jurisdictional criteria?

Hydrologic Characteristics

- Hydroperiod
 - Duration of inundation
 - Average water table depth
 - Dynamic vs. static water table
- Episaturation vs. endosaturation
- Recharge vs. discharge

Benefits of Hydrologic Characterization

- Hydrologic characteristics impact functional capacity.
 - Hydrologic functions
 - Biogeochemical functions
- Wetland restoration
- Rapid assessment of wetland condition

Soil morphology reflects long-term hydrologic conditions.

Soil morphology responds very slowly to altered hydrology.

Today's morphology reflects historic hydrologic conditions.

Basis for the Field Indicators

Most indicators are based on low chroma colors near the surface due to iron reduction &/or organic matter accretion.

In some cases redox concentrations are required to 'prove' the low chroma is due to wetness.

Short term saturation: orange + grey
Long term saturation: uniform grey
Long term inundation: black & brown

3

Wet

Iron reduction & segregation

Wetter

Thick, dark A horizons

Wettest

O horizons organic

Wet

Wetter

Wettest

F3. Depleted matrix

A11. Depleted below dark surface

A3. Black histic

Water Table Fluctuations

Seasonally Saturated

A11

F3

Permanently Inundated

Discharge Wetland

A5

F12

Recharge Wetland

F3. Depleted Matrix: Recharge or Discharge?

1. A layer at least 2" thick all within 6" of the surface. <u>2. A layer at least</u> 6" thick starting within 10" of the surface.

Endosaturated

Episaturated (perched)

Perched Indicators: F8. Redox Depressions

In closed depressions subject to ponding, ≥ 5 % redox concentrations in a layer $\geq 2^{\prime\prime}$ thick and is entirely within the upper 6" of the soil.

F3. Depleted Matrix: Endosaturated or Episaturated?

1. A layer at least 2" thick all within 6" of the surface. 2. A layer at least 6" thick starting within 10" of the surface.

1. Episaturated

2. Endosaturated

Median WT Depth for Piedmont Slope Wetlands Separated by Field Indicator

Hydroperiod Characteristics of Piedmont Slope Wetlands: Inundation & Median Water Table Depth

Temporal Distribution (% year) of WT Depth in Piedmont Slope Wetlands.

Review

- F3. Depleted Matrix: seasonal saturation, dynamic water table (mineral soil flat)
- A3. Black Histic: long-term inundation (backswamp)
- A5. Stratified Layers: floodplains, discharge systems
- F2. Loamy Gleyed Matrix: recharge systems, endosaturation
- A8. Redox Depressions: episaturation

Considerations When Using Field Indicators to Characterize Hydrology

- Regionalized
- Landscape position
- Other soil characteristics
 - Parent material
 - Texture
 - Structure
 - Confining layers

Wetland Restoration. How do we return when we don't know where we where?