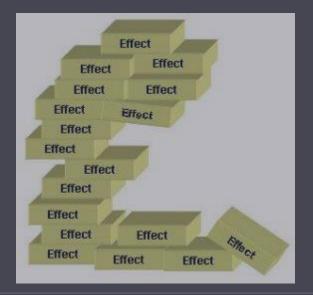


ASWM Energy Project Cumulative Adverse Effects

Wing Goodale: July 24, 2018

Webinar Overview

- Project objectives
- Overview: Cumulative adverse effects (CAE)
- Assessment: A process for assessing cumulative adverse effects of pipelines on wetlands
- Questions/feedback



Project Objective

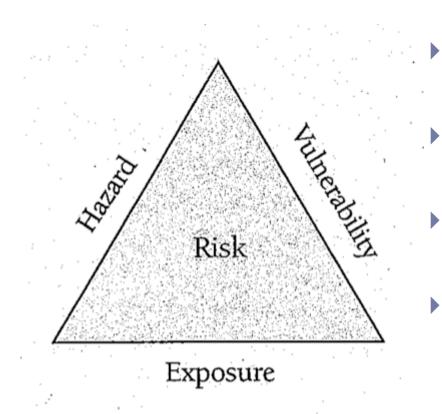
- Provide a literature review on framing, assessing, and managing cumulative adverse effects of <u>natural gas</u> <u>transmission</u> pipelines on wetlands
- Provide an approach to consider cumulative adverse effects under <u>NEPA</u> when conditioning pipeline permits
- Provide an actionable guidance document to support management decisions

Project Process

- Association of State Wetland Managers developed "Cumulative Effects" sub-workgroup
 - Comprised of state, federal, and tribal representatives
- Members responded to a survey focused on defining adverse effects, hazards, and vulnerable wetlands
- Several working calls discussing aspects of framing
- Presentation to the group of the basic process
- Development of a white paper
- Overall results presented in the webinar

Cumulative Adverse Effects (CAE)

Background and Overview


Why do we care?

- Legal: Legal requirement to include cumulative effects in environmental assessments in the U.S., Canada, U.K., E.U.
- **Ecological**: Ecologically it is the accumulation of all anthropogenic actions over time and space
- Pipelines and wetlands: While the effects of one project maybe insignificant, those cumulatively from multiple projects will lead to significant loss or conversion of wetlands

What are Adverse Effects?

- **Hazards**: physical changes to the environment from pipelines
- Vulnerability: documented wetland sensitivity to hazards
 - **Exposure**: present of wetland in a development area
 - Wetland adverse effects:
 - Direct: Loss of wetland function and conversion
 - Indirect: Degraded water quality and modified hydrology

What is cumulative adverse effects?

- NEPA Definition: "Cumulative impact" is the impact on the environment which results from the <u>incremental</u> <u>impact of the action when added to other past</u>, <u>present, and reasonably foreseeable future actions</u> (40 CFR §1508.7)
- Cumulative adverse effects (CAE) is a process through which adverse effects accumulate
- CAE assessments are inconsistent partly because of a lack of clear framing

What Type of Risk is CAE

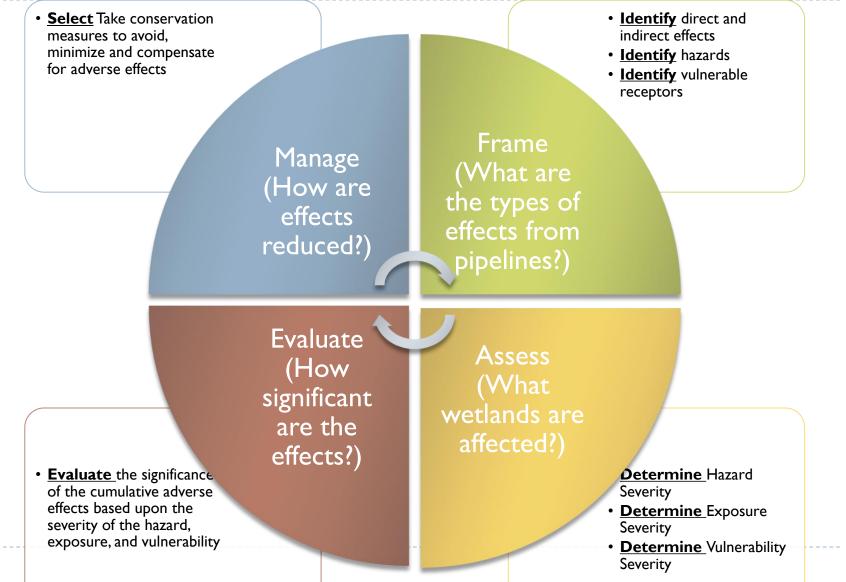
Risk type

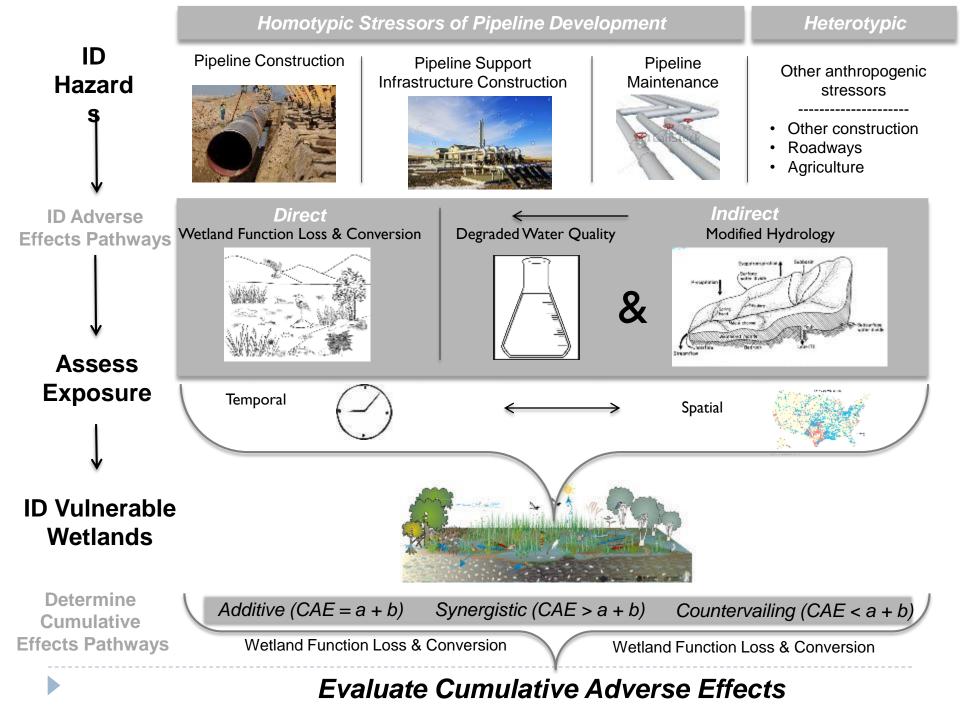
- NOT Simple: Basic cause and effect
- IS Systemic
 - <u>Complex</u>: Cause and effects relationships multifaceted
 - Uncertain: Limits and absence of scientific knowledge
 - <u>Ambiguous</u>: Different perspectives

How and why do we assess cumulative adverse effects?

• Why assess CAE?

- Support conservation measures to avoid, minimize, and compensate for adverse effects
 - Cumulative adverse effects are reduced by minimizing adverse effects of each project


How to assess?


Must narrow the scope to have a meaningful assessment

Risk governance process

- **Framing** the risk in order to assess
- **Assess** the risk in order to evaluate
- **Evaluate** the risk in order to manage
- Manage the risk

Governing Cumulative Adverse Effects

Assessing the CAE of Pipeline Development on Wetlands

Framing (scoping)

- Hazard Scope: Homotypic, i.e., pipelines only
- Receptor Scope: Freshwater wetlands as defined by NWI
- Primary Adverse Effects: Direct and indirect will be project specific

Spatial boundaries

- Political boundaries: Individual states
- Watershed boundaries: HUC 6 & 8 watersheds
- Pipeline buffer: 300 feet on either side of the central line of the pipeline

Temporal boundaries

- Past: Number of pipelines operating within the HUC watershed defined in the spatial scope
- Present: Number of pipelines currently being permitted within the watershed
- Future: Number of pipelines planned within the watershed

Qualitatively Assess CAE

- Determine hazard severity: How extensive is the project?
 - Identify adverse effects: What are the anticipated direct and indirect effects
- Determine spatial exposure severity: How many wetland are exposed and will be converted and/or will loose functionality?
- Determine temporal exposure severity: How does the proposed pipeline incrementally contribute to adverse effects from past, present, and anticipated development?
- Determine vulnerability severity: How significant (i.e., high quality) are the wetlands that are be exposed?
- Evaluate Cumulative Adverse Effects:
 - What is the significance

Assessment Output

Development of a simple risk index

Project # Hazard		Spatial Exposure	Temporal Exposure	Vulnerable Wetlands	CAE Index
1	0 - 5	0 - 5	0 - 5	0 - 5	0 - 1

Index can then be mapped to categories

CAE Risk Level	CAE Index Value
Negligible	0-0.2
Minor	0.2 - 0.4
Moderate	0.4 - 0.6
Major	0.6 - 1.0

Determine Hazard Severity

How extensive is the project?

- How many miles is the planned pipeline?
- How many support structures are planned?

What are the anticipated adverse effects?

- Direct
 - $\hfill\square$ Is wetland loss and conversion expected?
- Indirect
 - □ Are hydrological changes expected?
 - $\hfill\square$ Is water quality degraded?

Make qualitative hazard severity determination: Scale 0 (negligible) - 5 (high) = 2

Hazard	Number
Pipeline	10 km
Auxiliary structure A	1 structure
Auxiliary structure B	1 structure

Assessment Matrix

Project			Vulnerable Wetlands	
1	2			

* CAE = <u>C</u>umulative <u>A</u>dverse <u>E</u>ffects

Determine Spatial Exposure Severity

How many wetlands are being exposed?

- How many NWI wetlands within the study area (300 feet of the central line of the pipeline)?
- How many wetlands within the watershed are exposed?
 - How many HUC 8 watersheds will the pipeline pass through?
 - How many NWI wetlands are in each HUC 8 watershed?
- Make qualitative spatial exposure determination:
 - Scale 0 (negligible) 5 (high) = 4

Wetlands	Number	Area (km²)
Within project area	17	1.2
HUC 8	77	8,563
Percent of wetlands within watershed exposed	22%	< 0.001

Assessment Matrix

Project			Vulnerable Wetlands	
1	2	4		

Determine Temporal Exposure Severity

- How does the proposed pipeline incrementally contribute to adverse effects from past, present, and anticipated development?
 - Past: How many pipelines currently are operational within the watershed?
 - Present: How many pipelines are currently being permitted within the watershed?
 - Future: How many pipelines are planned within the watershed?
- Make qualitative temporal exposure determination:
 - Scale 0 (negligible) 5 (high) = I

Assessment Matrix

Project	Hazard			Vulnerable Wetlands	
1	2	4	1		

Determine Vulnerability Severity

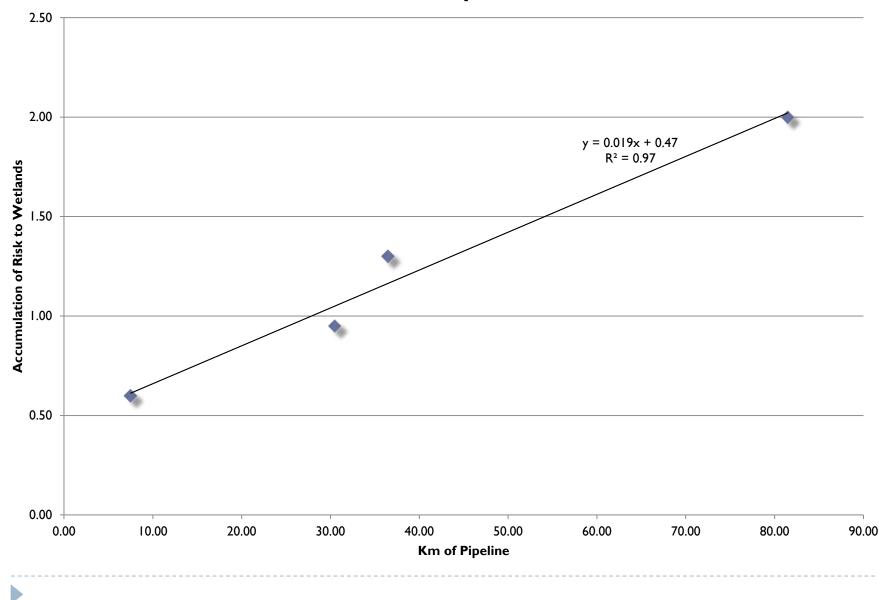
How significant are the wetlands being exposed?

- What are the wetland types exposed to the project?
- What is the conservation status of each wetland type?
- What is the status of the wetlands within the HUC 8 watershed?
- Make qualitative vulnerability determination: Scale 1 (low)
 5 (high) = 5

NWI Type	Cons Status	# Project	Area Project (km²)	# HUC	Area HUC (km2)	% Exposed	% Area Exposed
Emergent	Low	2	0.1	45	10		
Scrub-shrub	Moderate	5	0.4	1,289	56		
Forests	High	1	0.2	234	34		

Assessment Matrix

Project	Hazard			Vulnerable Wetlands	
1	2	4	1	5	


Assessment Matrix & Index

- <u>Simple sum</u>: Hazard + S. Exposure + T. Exposure + Vul. = 12/20 = 0.6 CAE index
- Weighted: Hazard + S. Exposure + T. Exposure + (Vul. x 5) = 32/40 = 0.8 CAE index
- Scale:
 - Negligible = 0-0.2; Low = 0.2-0.4; Medium = 0.4-0.6; High = 0.6 <</p>

Project	Hazard			Vulnerable Wetlands	CAE Index
1	2	4	1	5	0.6-0.8

Maine State Assessment Matrix

Project	Km of Pipeline	Cumulative Sum of Development	CAE Index	Cumulative Sum of Risk
1	7.5	7.50	0.6	0.6
2	23	30.50	0.35	0.95
3	6	36.50	0.35	1.3
4	45	81.50	0.7	2

Cumulative Adverse Effects of Pipelines on Wetlands in Maine

Evaluate and Manage

Evaluate

Based upon the assessment how significant are the cumulative adverse effects

Manage

- What conservation measures or management actions should be taken to reduce cumulative adverse effects
- Inform selection of BMPs based upon CAE assessment

Thank you!

Questions, Comments?